NASA Technologies Significantly Reduce Aircraft Noise

Aircraft Noise

More than 70 % reduction in airframe noise achievable

Washington D.C., June 25, 2018: A series of NASA flight tests has successfully demonstrated technologies that achieve a significant reduction in the noise generated by aircraft and heard by communities near airports.

The Acoustic Research Measurement (ARM) flights, which concluded in May, at NASA’s Armstrong Flight Research Center in California, tested technology to address airframe noise, or noise that is produced by non-propulsive parts of the aircraft, during landing. The flights successfully combined several technologies to achieve a greater than 70 percent reduction in airframe noise.

While porous concepts for landing gear fairings have been studied before, NASA’s design was based on extensive computer simulations to produce the maximum amount of noise reduction without the penalty of increasing aerodynamic drag. The landing gear cavity was treated with a series of chevrons near its leading edge, and a net stretched across the opening to alter airflow, aligning it more with the wing.

“The number one public complaint the Federal Aviation Administration receives is about aircraft noise,” said Mehdi Khorrami, an aerospace scientist at NASA’s Langley Research Center in Virginia, and principal investigator for Acoustic Research Measurement. “NASA’s goal here was to reduce aircraft noise substantially in order to improve the quality of life for communities near airports. We are very confident that with the tested technologies we can substantially reduce total aircraft noise, and that could really make a lot of flights much quieter.”

NASA tested several experimental designs on various airframe components of a Gulfstream GIII research aircraft at Armstrong, including landing gear fairings and cavity treatments designed and developed at Langley, as well as the Adaptive Compliant Trailing Edge (ACTE) wing flap, which had previously been flight-tested to study aerodynamic efficiency. The aircraft flew at an altitude of 350 feet, over an 185-sensor microphone array deployed on the Rogers Dry Lake at Edwards Air Force Base in California.

The Landing Gear Noise Reduction technology element addressed airframe noise caused by airflow moving past the landing gear on approach. The experimental landing gear tested by NASA features fairings that are porous along their front, meaning they consist of many tiny holes that, in part, allow some of the air to flow through the fairing, while also deflecting some of the airflow around the landing gear.

Aircraft Noise

While porous concepts for landing gear fairings have been studied before, NASA’s design was based on extensive computer simulations to produce the maximum amount of noise reduction without the penalty of increasing aerodynamic drag. The landing gear cavity was treated with a series of chevrons near its leading edge, and a net stretched across the opening to alter airflow, aligning it more with the wing.
Photo: NASA/Ken Ulbrich

Porous concepts have been studied before, but the unique design developed by NASA resulted from highly detailed computer simulations that led NASA engineers to what they believe is the ideal design for maximum noise reduction without increasing aerodynamic drag.

Another area of focus was landing gear cavities, also a known cause of airframe noise. These are the regions where the landing gear deploys from the main body of an aircraft, typically leaving a large cavity where airflow can get pulled in, creating noise. NASA applied two concepts to these sections, including a series of chevrons placed near the front of the cavity with a sound-absorbing foam at the trailing wall, as well as a net that stretched across the opening of the main landing gear cavity. This altered the airflow and reduced the noise resulting from the interactions between the air, the cavity walls, and its edges.

To reduce wing flap noise, NASA used an experimental, flexible flap that had previously been flown as part of the ACTE project, which investigated the potential for flexible, seamless flaps to increase aerodynamic efficiency. As opposed to conventional wing flaps that typically feature gaps between the flap and the main body of the wing, the ACTE flap, built by FlexSys Inc. of Ann Arbor, Michigan, is a seamless design that eliminates those gaps.

Significant reduction in aircraft noise must be realized in order for air transportation growth to maintain its current trend. The reduction of airframe noise using NASA technology is an important achievement in this effort, as it may lead to quieter aircraft, which will benefit communities near airports and foster expanded airport operations.

“This airframe noise reduction produced by NASA technology is definitely momentous, and the best part is that it directly benefits the public,” said ARM Project Manager Kevin Weinert. “While there are obvious potential economic gains for the industry, this benefits the people who live near major airports, and have to deal with the noise of aircraft coming in to land. This could greatly reduce the noise impact on these communities.”

For more information about NASA’s aeronautics research, please visit: https://www.nasa.gov/aeroresearch

Source: NASA Headquarters, Washington D.C.  and Armstrong Flight Research Center, Edwards, California

NASA Advances Concepts for Next-gen Aircraft

sustainable aviation

Higher efficiency, less noise and fewer emissions!

Cleveland, November 7, 2017: An aviation renaissance, one focused on energy efficiency and economic impact, is on the horizon, and it’s changing how engineers look at aircraft power and design.

Although the aircraft industry continues to adopt innovative technologies, which are making current aircraft more energy efficient, there’s new interest in exploring alternative propulsion systems and energy sources. This new interest presents an opportunity to develop cutting-edge technologies that will dramatically reduce fuel usage, while opening up potential new markets and business opportunities for American companies and carriers.

“I feel we are at a tipping point in commercial aviation,” says Jim Heidmann, manager of NASA’s Advanced Air Transport Technology Project (AATT). “We are exploring and developing game-changing technologies and concepts for aircraft and propulsion systems that can dramatically improve efficiency and reduce environmental impact and accelerate the introduction of new aircraft.”

To provide better efficiency with less noise and fewer emissions, NASA is working with the aviation industry and academia to develop unique vehicle concepts that will use different fuselage shapes; longer, skinnier and more blended wings; innovative materials and components; and highly-integrated propulsion (engine) systems.

NASA aims to accelerate the final testing and validation of these advanced concepts and technologies through its New Aviation Horizons initiative. This initiative outlines the development of a series of experimental planes (X-planes), which will achieve the agency’s aircraft-level metrics for fuel consumption, emissions and noise.

The work has already begun under New Aviation Horizons as NASA is preparing to build and fly the first such X-plane – a low-boom supersonic flight demonstrator.

A turboelectric aircraft configuration is among several candidates for future subsonic transport X-planes that will prove the benefits of these advanced technologies in piloted flight within the next decade.

STARC Contrast: Smaller engines provide more power

One of the most pivotal areas of commercial aviation’s transformation centers around propulsion, and a team of engineers at NASA’s Glenn Research Center in Cleveland is conducting cutting-edge research into high-pressure-ratio compact gas turbine engines, low-emission combustors, electric-enhanced propulsion and boundary-layer ingesting (BLI) engines.

“We believe global competition and international certification standards will drive reduced fuel consumption and more efficient aircraft and propulsion concepts that may use cleaner forms of energy,” said Heidmann. “We also see the potential emergence of alternative modes of commercial transport, such as on-demand and flight service between rarely-traveled locations, both of which would represent new markets and potential beneficiaries of revolutionary propulsion technologies.”

Some of the key propulsion system advances the NASA Glenn team is pursuing converge in an aircraft concept study called STARC-ABL (single-aisle turboelectric aircraft with an aft [at the rear of the aircraft] boundary-layer propulsor).

The STARC-ABL concept, developed by NASA’s Jim Felder and Jason Welstead, is under consideration as one of NASA’s future X-planes. It looks similar to the proven tube-and-wing aircraft you see every day. But, unlike those aircraft, a significant amount of electrical power, approximately three megawatts, is used for turboelectric propulsion, in addition to the electrical operation of subsystems like flight controls, avionics and de-icing.

Imagine a Boeing 737, but with slightly smaller engines. Not a dramatic design departure, but STARC-ABL’s tail features a “T-tail” horizontal stabilizer configuration with a BLI ducted fan on the tail, which is driven purely by electric power derived from generators mounted to the underwing engines.

The wing-mounted engines supply 80 percent of the thrust required during takeoff and 55 percent at cruise, while the tail-mounted, all-electric BLI turbofan accounts for remaining thrust. Researchers predict a potential fuel consumption improvement of roughly 10 percent using this innovative system.

 

Next Step: Collaboration leads to solutions

While NASA is preparing for initial ground tests of a subscale STARC-ABL concept later this fall at NASA’s Electric Aircraft Testbed (NEAT) at Plum Brook Station in Sandusky, Ohio, several vehicle-level development challenges remain: How to balance aerodynamic efficiency, appropriately optimize the engines and aft BLI fan, validate the BLI benefits, store energy, compensate for additional weight, and meet safety and operational requirements.

To further investigate the challenges surrounding the hybridization of commercial aircraft, NASA is looking to industry and academic expertise for solutions.

NASA recently awarded 12-month contracts to Boeing, teamed with Georgia Tech, and Liberty Works, with ES Aero, to develop preliminary single-aisle, 150-seat aircraft designs using promising electric-enhanced propulsion and vehicle configuration concepts.

“During the 12-month cycle, we’ll work with the teams to take a deep dive into their hybrid and turboelectric aircraft concepts,” said Amy Jankovsky, NASA’s AATT subproject manager. “These concepts will provide in-depth, detailed analyses of the propulsion and electrical systems, and we will recommend technology development paths for their concepts.”

The year-long study will also reveal new development approaches and any unforeseen technological hurdles, as well as any safety and flight certification challenges that could get an aircraft like STARC-ABL or other next-generation, hybrid or turboelectric aircraft concepts aloft within 20 years.

And while those proposed industry concepts could look like STARC-ABL, the real objective is to transform commercial aviation by using new propulsion technologies that meet NASA’s aircraft-level requirements of energy use, life-cycle carbon, landing-and-takeoff emissions and noise.

 

Ready for Takeoff: Development, testing, flight

Final reports from the industry study will outline hybrid-electric and conventional single-aisle aircraft concept designs, technology roadmaps for the major electrical systems and aircraft subsystems, and the evaluation of the concepts’ performance against NASA aircraft metrics.

“As we move forward, we’d like to further develop the powertrains for these and any other concepts that may prove viable by building and testing them at NEAT and other NASA facilities,” said Jankovsky. “We’ll identify key performance parameters for components such as motors, generators and power electronics, and any wind tunnel, altitude and other ground tests and flight demonstrations that are appropriate.”

Ultimately, NASA hopes to contribute to a next-generation aircraft that will substantially reduce fuel burn, noise and emissions. Many researchers feel we are only a few steps away from a major aviation revolution, and that a commercial aircraft using NASA-developed, hybrid-electric or turboelectric propulsion technology could be flying to an airport near you in the not too distant future.

Source: NASA, Glenn Research Center

Climate Change – NASA: June 2017 was Fourth-warmest on Record

IASA e.V. - Climate Change

10 warmest months of June occurred between 2005 and 2017

Washington, July 14, 2017:

June 2017 was the fourth warmest June in 137 years of modern record-keeping, according to a monthly analysis of global temperatures by scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York.

Last month was 0.69 degrees Celsius warmer than the mean June temperature from 1951-1980. It is surpassed by June 2016 (+0.79 °C) and June 2015 and 1998 (+0.78 °C) and only insignificantly warmer than June 2005 (+0.68 °C).

Except for June 1998, the 10 warmest months of June occurred between 2005 and 2017.

The monthly analysis by the GISS team is assembled from publicly available data acquired by about 6,300 meteorological stations around the world, ship- and buoy-based instruments measuring sea surface temperature, and Antarctic research stations.

The modern global temperature record begins around 1880 because previous observations didn’t cover enough of the planet. Monthly analyses are sometimes updated when additional data becomes available, and the results are subject to change.

IASA e.V. - Climate Change

A global map of the June 2017 LOTI (land-ocean temperature index) anomaly, relative to the 1951-1980 June average. Source: NASA

For more information on NASA about Climate Change and GISS’s monthly temperature analysis, please visit: data.giss.nasa.gov/gistemp

Source: NASA

Pratt & Whitney Partners with NASA to Create Green Future for Aviation

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

Working on engines producing up to 75% fewer emissions

East Hartford, CT, February 23, 2017:  Pratt & Whitney has been chosen by NASA’s Aeronautics Research Mission Directorate to be a part of NASA’s Ultra-High Bypass Advanced Nacelle Technologies Flight Demonstration. The goal of the partnership is to develop engines for commercial airliners that produce less pollution and are more fuel-efficient.
This is not the first time that Pratt & Whitney has worked with NASA to advance green engine technologies. The two organizations partnered a number of times during the 1990s and 2000s, and together, they have made significant advancements in fuel-efficient technologies. A project in the 1990s through NASA’s Advanced Subsonic Technology program led to the development of base technology for fuel-efficient fans. Another partnership in 2005 through the Space Act Agreement gave Pratt & Whitney access to NASA expertise and facilities for engine testing.
The most notable result of the P&W-NASA partnership is the development of technology for the PurePower® Geared Turbofan™ (GTF) family of engines. The GTF engine improves efficiency by over 16 percent and increases fuel savings while dramatically reducing noiseby 50 percent, a profound advancement for the aeronautics industry. The success of the partnership between the two organizations, particularly the development of technology for the GTF, has created even more opportunities for collaboration.
Pratt & Whitney is currently working with NASA on the ‘New Aviation Horizons’ initiative, through which a new generation of revolutionary “X-planes” featuring advanced technologies will be designed, built and tested over a 10-year period.
Pratt & Whitney engines are included on four out of five of the experimental aircraft designs. According to NASA, the project aims “to develop aircraft that use 50 percent less fuel, produce 75 percent fewer emissions, and are notably more quiet than today’s vehicles.” Pratt & Whitney is making large contributions to this initiative that aims to have futuristic aircrafts in the sky as soon as the 2020s.
With the new three-year Ultra-High Bypass Advanced Nacelle Technologies partnership, Pratt & Whitney, UTC Aerospace Systems and Boeing will look to build on the innovations of the past, and develop the physics for a new generation of GTF engines that will be even more efficient and quiet. With technologies based on the learning developed through this partnership, the goal is to improve efficiency by another 10 percent above the 16 percent efficiency improvement from the first generation GTF engines. 
“The goal is to build on the legacy of our partnership with NASA to work on improving our geared turbofan engine technologies,” said Michael Winter, senior fellow, Advanced Technologies, Pratt & Whitney. “Our work with NASA will help us extend the technology and move deeper into the design space.”
This partnership will likely have a large impact on the future of our world. With new advancements from this partnership, we may see the environmental cost of air transport reduced as a result of increased fuel savings, or home and business owners near airports no longer negatively affected by the constant roar of airplanes overhead.
“This partnership is not only good for our business, but for the planet,” Winter said. “Our ability to technically differentiate our products while also doing good for our world defines the legacy we leave. As engineers, what more could we hope for?” 
Source: Pratt & Whitney

NASA: Prototype Air Traffic Tool Ready for Airborne Workout

sustainable aviation

New sustainable ‘Flight Deck Interval Management’ system to save fuel, flight time and money

 

Seattle, February 2, 2017: In a series of flights called Air Traffic Management Technology Demonstration-1  (ATD-1), NASA’s Aeronautics Research Mission Directorate is testing airborne flight deck interval management software with the help of the Federal Aviation Administration (FAA) and leading aviation partners.

The month-long campaign involves three planes: a Boeing 757 and a business jet – either a Dassault Falcon 900 or an Embraer 170 – supplied by Honeywell, and a Boeing 737 provided by United Airlines. The aircraft are based at King County International and Seattle-Tacoma International Airports in Seattle, but the flight test will take place about 120 miles east, over Grant County International Airport.

After years of research and laboratory work, a full airborne demonstration of new technology and procedures aimed at improving air traffic flow into busy airports is on schedule to take off this month over Washington State.

The system is called Flight Deck Interval Management, or FIM, and its key benefit is that it will help air traffic controllers and pilots more precisely manage and safely shorten the time, or interval, between airplanes landing on a runway.

“All the pilots that are going to be flying the FIM operations have gone through the training modules and simulations. The equipment is all set and we’re ready to go,” said Sheri Brown, ATD-1 project manager at NASA’s Langley Research Center in Virginia.

The research is intended to help airplanes spend less time in the air, save money on fuel, and reduce engine emissions – all the while improving schedule efficiency to help passengers arrive at their destination on time and avoid missing connecting flights.

FIM is the final piece of a suite of aircraft arrival technology developed under the ATD-1-program. Two other NASA-developed technologies from ATD-1 – Traffic Management Advisor with Terminal Metering and Controller Managed Spacing – together were already  delivered to the FAA in 2014 as a single tool known as Terminal Sequencing and Spacing (TSAS).

Information provided to air traffic controllers from TSAS will be combined with NASA-developed software that is at the heart of FIM. The result is guidance that directs pilots to fly at a certain speed and maintain a more precise spacing with an aircraft flying ahead of them all the way down to the runway.

“It’s a very simple ‘follow the leader’ operation that is easy to execute by the flight crew,” Sheri Brown said. During the course of the flight tests, researchers hope to complete some 80 runs involving three major flight scenarios:

  • flying at a cruise altitude of 35,000 feet,
  • descending from cruise altitude all the way down to the airport, and
  • making a final approach beginning about 15 minutes before touchdown.

The plan is to fly about five-and-a-half hours each weekday, testing up to five test scenarios during each daily sortie. The Honeywell 757 and United 737 will be equipped with the FIM system in its cockpits, where its pilots will “follow the leader” during test runs behind the Honeywell business jet, which will provide its speed and position information to the other aircraft.

sustainable aviation

(l to r) Jason McMahon, Helmuth Eggeling and Scott Nyberg — lead test pilots from Honeywell Aerospace’s Flight Ops engineering organization – take part in final checkouts of the ATD-1 technologies and flight plans.
Credits: NASA / David C. Bowman

If all goes well with the demonstration, the entire FIM system – including software and hardware – will be turned over to the FAA by the fall of 2017, where the FAA will continue to evaluate and test it before making a decision to certify its use.

Source: NASA Aeronautics Research Mission Directorate / Jim Banke, Lillian Gipson

Vanilla Aircraft Claims World Record with 56-hour Flight

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

Multispectral imaging payload as a demonstration of Earth science and agricultural remote sensing

 
Falls Church, VA, January 3, 2017:  Vanilla Aircraft today announced that on December 2, their VA001 unmanned aircraft system (UAS) completed a non-stop, unrefueled 56-hour flight. The flight was submitted for a world duration record for combustion-powered unmanned aerial vehicles (UAVs) in the 50-500 kg subclass (Fédération Aéronautique Internationale, FAI, Class U-1.c, Group 1). A representative from the National Aeronautic Association was present to witness the record.
The flight, planned as a 120-hour mission, was ended early due to forecasted severe icing and range restrictions. However, the airplane landed with enough JP-8 fuel on board for an additional 90 hours of flying, or enough for a total of six days of flight.
The flight was supported by the technology innovation investments of the Department of U.S. Defense’s Rapid Reaction Technology Office (RRTO) and DARPA-funded efforts through Naval Air System Command (NAVAIR 4.11 – Patuxent River). Originating and ending at Las Cruces International Airport, the flight was conducted under the authority of the New Mexico State University UAS test site designated by the Federal Aviation Administration (FAA).
“This effort represents tremendous and unprecedented coordination among civil, defense, academic, and private industry to bring a heretofore only imagined capability to reality,” said Vanilla Aircraft CEO Rear Adm. Timothy Heely (ret.).
The airplane carried 20 pounds of actual and simulated payload, flying at 6,500 to 7,500 feet above mean sea level (MSL), and was a further step for the VA001 towards demonstrating the system’s objective performance of carrying a 30-pound payload for 10 days at an altitude of 15,000 feet. The payload included a NAVAIR-provided relay and operated continuously throughout the flight to demonstrate functionality out to the maximum range. The airplane also carried a NASA-provided multispectral imaging payload as a demonstration of Earth science and agricultural remote sensing.
“The VA001 would be a cost-effective option for widespread and regular low-level surveying. We could fill a wide cost and payload-capability market gap between small electric and large military unmanned aircraft, which is perfect for many commercial applications,” says co-founder and program manager Jeremy Novara. Vanilla is currently exploring strategic partnerships and equity financing to expand into this market. 
Source: Vanilla Aircraft

Heathrow:  “Garden Gate” planted and growing at  Terminal 3 

Heathrow, October 10, 2016: Passengers flying from Terminal 3, Gate 25, will now be treated to a garden of 1,680 plants. Heathrow’s new “Garden Gate,” installed by urban greening specialists Biotecture, will be trialled for the next 6 months. If the trial is a success, Heathrow will explore implementing Garden Gates across the airport.

Garden Gate

The Garden Gate is comprised of 7 panels,  1.8m high x 2.4m wide, each containing 240 plants. Each plant panel is fitted with a water reservoir and nutrient system which allows the wall to flourish for an extended period of time in an artificial environment. Advancements in LED technology enables indoor plant growth using less energy (e.g. more light and less heat).

The plant selection is largely based on early research conducted by Dr Bill Wolverton on behalf of NASA to prove that plants, namely the English Ivy and the Peace Lily, absorbed the air around them, translocated it to their roots, where organisms turned some air particles into food for the plant.

Heathrow’s new Garden Gate is its latest effort to make every journey better, following a record-breaking first half of 2016 which saw the highest passenger satisfaction scores to date. It will provide an eco-sanctuary within Britain’s busiest airport. Academic research points to a correlation between calm, comfort and relaxation and exposure to plants.

Emma Gilthorpe, Strategy Director at Heathrow says: “We are proud to have received our best ever passenger service scores to date this summer, but we are always keen to make our passengers’ journeys better.  With our new Garden Gate, our passengers can enjoy a natural sanctuary of rest and relaxation as they make their way through the airport, with 1,680 plants ready to see them on their way.”

On average, 287,274 passengers go through Gate 25, Terminal 3, every year.

Heathrow:  “Garden Gate” planted and growing at  Terminal 3

Transportation hubs are ideal locations for green infrastructure as shown at Heathrow airport

Source: Heathrow Airport

X-57 – NASA’s Electric Research Plane Gets X Number

Flying testbed to reduce fuel use, emissions and noise

Washington, D.C., June 17, 2016: With 14 electric motors turning propellers and all of them integrated into a uniquely-designed wing, NASA will test new propulsion technology using an experimental airplane now designated the X-57 and nicknamed “Maxwell”.

NASA Administrator Charles Bolden highlighted the agency’s first X-plane designation in a decade during his keynote speech Friday in Washington at the American Institute of Aeronautics and Astronautics (AIAA) annual Aviation and Aeronautics Forum and Exposition, commonly called Aviation 2016.

“With the return of piloted X-planes to NASA’s research capabilities – which is a key part of our 10-year-long New Aviation Horizons initiative – the general aviation-sized X-57 will take the first step in opening a new era of aviation,” Bolden said.

As many as five larger transport-scale X-planes also are planned as part of the initiative. Its goals – like the X-57 – include demonstrating advanced technologies to reduce fuel use, emissions and noise, and thus accelerate their introduction to the marketplace.

The X-57 number designation was assigned by the U.S. Air Force, which manages the history-making process, following a request from NASA. The first X-plane was the X-1, which in 1947 became the first airplane to fly faster than the speed of sound.

“Dozens of X-planes of all shapes, sizes and purposes have since followed – all of them contributing to our stature as the world’s leader in aviation and space technology,” said Jaiwon Shin, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Planes like the X-57, and the others to come, will help us maintain that role.”

 

Honoring James Clerk Maxwell

NASA researchers working directly with the electric airplane also chose to name the aircraft “Maxwell” to honor James Clerk Maxwell, the 19th century Scottish physicist who did groundbreaking work in electromagnetism. His importance in contributing to the understanding of physics is rivaled only by Albert Einstein and Isaac Newton.

As part of a four-year flight demonstrator plan, NASA’s Scalable Convergent Electric Propulsion Technology Operations Research project will build the X-57 by modifying a recently procured, Italian-designed Tecnam P2006T twin-engine light aircraft.

Its original wing and two gas-fueled piston engines will be replaced with a long, skinny wing embedded with 14 electric motors – 12 on the leading edge for take offs and landings, and one larger motor on each wing tip for use while at cruise altitude.

NASA’s aeronautical innovators hope to validate the idea that distributing electric power across a number of motors integrated with an aircraft in this way will result in a five-time reduction in the energy required for a private plane to cruise at 175 mph.

 

Flying without carbon emissions

Several other benefits would result as well. “Maxwell” will be powered only by batteries, eliminating carbon emissions and demonstrating how demand would shrink for lead-based aviation fuel still in use by general aviation.

Energy efficiency at cruise altitude using X-57 technology could benefit travelers by reducing flight times, fuel usage, as well as reducing overall operational costs for small aircraft by as much as 40 percent. Typically, to get the best fuel efficiency an airplane has to fly slower than it is able. Electric propulsion essentially eliminates the penalty for cruising at higher speeds.

Finally, as most drivers of hybrid electric cars know, electric motors are more quiet than conventional piston engines. The X-57’s electric propulsion technology is expected to significantly decrease aircraft noise, making it less annoying to the public.

The X-57 research started as part of the NASA Aeronautics Research Mission Directorate’s Transformative Aeronautics Program’s Convergent Aeronautics Solutions project, with the flight demonstrations being performed as part of the Flight Demonstration Concepts project in the Integrated Aviation Systems Program. As a previous part of the program, NASA researchers performed ground testing of a 31-foot-span, carbon composite wing section with 18 electric motors powered by lithium iron phosphate batteries. The experimental wing, called the Hybrid-Electric Integrated Systems Testbed (HEIST), is mounted on a specially modified truck. Testing on the mobile ground rig assembly will provide valuable data and risk reduction applicable to future flight research. Instead of being installed in a wind tunnel, the HEIST wing section will remain attached to load cells on a supporting truss while the vehicle is driven at speeds up to 70 miles per hour across a dry lakebed at Edwards Air Force Base.

X-57 - NASA's Electric Research Plane Gets X Number

This artist’s concept of NASA’s X-57 Maxwell aircraft shows the plane’s specially designed wing and 14 electric motors. NASA Aeronautics researchers will use the Maxwell to demonstrate that electric propulsion can make planes quieter, more efficient and more environmentally friendly. Credits: NASA Langley/Advanced Concepts Lab, AMA, Inc.

For more information about NASA’s electric propulsion research, please  go to: http://go.nasa.gov/1S55SPP

Source: NASA

NASA’s New X-plane Program

X-plane: Preliminary design work to build a quieter supersonic passenger jet

Arlington, February 29, 2016: The return of supersonic passenger air travel is one step closer to reality with NASA’s award of a contract for the preliminary design of a “low boom” flight demonstration aircraft. This is the first in a series of ‘X-planes’ in NASA’s New Aviation Horizons initiative, introduced in the agency’s Fiscal Year 2017 budget.

NASA Administrator Charles Bolden announced the award at an event Monday at Ronald Reagan Washington National Airport in Arlington, Virginia: “NASA is working hard to make flight greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently,” said Bolden. “To that end, it’s worth noting that it’s been almost 70 years since Chuck Yeager broke the sound barrier in the Bell X-1 as part of our predecessor agency’s high speed research. Now we’re continuing that supersonic X-plane legacy with this preliminary design award for a quieter supersonic jet with an aim toward passenger flight.”

NASA selected a team led by Lockheed Martin Aeronautics Company of Palmdale, California, to complete a preliminary design for Quiet Supersonic Technology (QueSST). The work will be conducted under a task order against the Basic and Applied Aerospace Research and Technology (BAART) contract at NASA’s Langley Research Center in Hampton, Virginia.

After conducting feasibility studies and working to better understand acceptable sound levels across the country, NASA’s Commercial Supersonic Technology Project asked industry teams to submit design concepts for a piloted test aircraft that can fly at supersonic speeds, creating a supersonic “heartbeat” — a soft thump rather than the disruptive boom currently associated with supersonic flight.

“Developing, building and flight testing a quiet supersonic X-plane is the next logical step in our path to enabling the industry’s decision to open supersonic travel for the flying public,” said Jaiwon Shin, associate administrator for NASA’s Aeronautics Research Mission.

Lockheed Martin will receive about $20 million over 17 months for QueSST preliminary design work. The Lockheed Martin team includes subcontractors GE Aviation of Cincinnati and Tri Models Inc. of Huntington Beach, California.

The company will develop baseline aircraft requirements and a preliminary aircraft design, with specifications, and provide supporting documentation for concept formulation and planning. This documentation would be used to prepare for the detailed design, building and testing of the QueSST jet. Performance of this preliminary design also must undergo analytical and wind tunnel validation.

In addition to design and building, this Low Boom Flight Demonstration (LBFD) phase of the project also will include validation of community response to the new, quieter supersonic design. The detailed design and building of the QueSST aircraft, conducted under the NASA Aeronautics Research Mission Directorate’s Integrated Aviation Systems Program, will fall under a future contract competition.

NASA’s 10-year New Aviation Horizons initiative has the ambitious goals of reducing fuel use, emissions and noise through innovations in aircraft design that departs from the conventional tube-and-wing aircraft shape.

The New Aviation Horizons X-planes will typically be about half-scale of a production aircraft and likely are to be piloted. Design-and-build will take several years with aircraft starting their flight campaign around 2020, depending on funding.

X-plane Quiet Supersonic Transport (QueSST)

This is an artist’s concept of a possible Low Boom Flight Demonstration Quiet Supersonic Transport (QueSST) X-plane design. The award of a preliminary design contract is the first step towards the possible return of supersonic passenger travel – but this time quieter and more affordable. Credits: Lockheed Martin

For more information about NASA’s aeronautics research, please visit: http://www.nasa.gov/aero

Source: NASA

NASA Partners on Air Quality Study in East Asia

Air Quality Study

Washington, D.C., February 24, 2016: NASA and the Republic of Korea are developing plans for a cooperative field study of air quality in May and June to advance the ability to monitor air pollution accurately from space.

The Korea U.S.-Air Quality study (KORUS-AQ) will assess air quality across urban, rural and coastal areas of South Korea using the combined observations of aircraft, ground sites, ships and satellites. Findings will play a critical role in the development of observing systems of ground and space-based sensors and computer models to provide improved air quality assessments for decision makers.

Air Quality Study

A new field study this May and June seeks to advance NASA’s ability to monitor air quality from space. This 2007 NASA satellite image shows a swath of air pollution sweeping east across the Korean peninsula to Japan. Credits: NASA

“KORUS-AQ is a step forward in an international effort to develop a global air quality observing system,” said James Crawford, a lead U.S. scientist on the project from NASA’s Langley Research Center in Hampton, Virginia. “Both of our countries will be launching geostationary satellites that will join other satellites in a system that includes surface networks, air quality models, and targeted airborne sampling.”

Air quality is a significant environmental concern in the United States and around the world. Scientists are trying to untangle the different contributors to air quality, including local emissions from human activities, pollution from far away, and natural sources such as seasonal fires and wind-blown dust.

South Korea’s capital, Seoul, is one of the globe’s five most-populated metropolitan areas. Because of the country’s varied topography and its location close to both rapidly industrializing mainland China and the ocean, the impacts associated with the many factors controlling air quality are larger and often easier to measure over the Korean peninsula than elsewhere.

“Working with our South Korean colleagues on KORUS-AQ, we will improve our understanding of the detailed factors controlling air quality, how the processes interact, and how they are changing over time,” Crawford said.

In accordance with an agreement NASA recently completed with South Korea’s National Institute of Environmental Research, Korean scientists will collect KORUS-AQ observations on the ground and in the air with a King Air aircraft from Hanseo University in Seosan. To take data during the experiment, NASA will contribute a DC-8 flying laboratory from the agency’s Armstrong Flight Research Center in Edwards, California, and a Beechcraft UC-12B King Air from Langley.

NASA

Two NASA research aircraft, the UC-12B (top) and the DC-8, will gather atmospheric data across urban, rural and coastal areas of South Korea to help improve the ability to monitor air pollution from space. Credits: NASA

Five South Korean instruments will be part of the DC-8 payload and one NASA instrument will be onboard the Hanseo aircraft. NASA’s DC-8 will conduct eight-hour flights to make direct measurements of the atmosphere from altitudes up to 25,000 feet. The NASA King Air will fly overhead with remote-sensing instruments that simulate satellite observations. The Hanseo King Air will make direct atmospheric measurements focusing on areas less accessible to the larger DC-8. Scientists and air quality modelers from both countries will work together to plan the aircraft flights and analyze the measurements.

South Korea maintains an extensive ground-based, continuous air-quality monitoring network of more than 300 sites. Almost half of the sites are in the Seoul area and just over 80 percent are in urban areas. South Korea will host NASA instruments at some of the monitoring sites that are being enhanced for KORUS-AQ.

  • KORUS-AQ will benefit the development of a new a constellation of spaceborne science satellites and instruments expected to launch in the years 2018-2022 that will make air quality measurements over Asia, North America, Europe, and North Africa. South Korea’s Geostationary Environment Monitoring Spectrometer instrument will monitor long-term climate change and improve early warnings for major pollution events for the Korean peninsula and Asia-Pacific region.
  • NASA’s Tropospheric Emissions: Monitoring of Pollution mission, an instrument that will fly as a hosted payload on a commercial communications satellite in geostationary orbit, will collect air pollution measurements over North America from Mexico City to Canada.
  • ESA’s (European Space Agency’s) Sentinel-4 mission will take air quality measurements and monitor stratospheric ozone, solar radiation and climate variables over Europe and Northern Africa.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing. For more information about NASA Earth science research, please visit: http://www.nasa.gov/earth

Source: NASA

1 2