IPCC Presents Special Report on Limiting Global Warming to 1.5°C

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

‘Next few years are probably the most important in human history…’

 Incheon, Republic of Korea, October 8, 2018: Limiting global warming to 1.5°C compared to 2°C could go hand in hand with ensuring a more sustainable and equitable society, the Intergovernmental Panel on Climate Change (IPCC) said on October 8 in a  ‘Special Report’.

The report will be the key scientific input into the coming Katowice Climate Change Conference in Poland in December 2018, when governments review the Paris Agreement to tackle climate change. Nevertheless, limiting global warming to 1.5°C would require rapid, far-reaching and unprecedented changes in all aspects of society with clear benefits to people and natural ecosystems, the IPCC said in a new assessment.

“With more than 6,000 scientific references cited and the dedicated contribution of thousands of expert and government reviewers worldwide, this important report testifies to the breadth and policy relevance of the IPCC,” said Hoesung Lee, Chair of the IPCC. Ninety-one authors and review editors from 40 countries prepared the IPCC report in response to an invitation from the United Nations Framework Convention on Climate Change (UNFCCC) when it adopted the Paris Agreement in 2015.

“We are already seeing the consequences of 1°C of global warming through more extreme weather..”

“One of the key messages that comes out very strongly from this report is that we are already seeing the consequences of 1°C of global warming through more extreme weather, rising sea levels and diminishing Arctic sea ice, among other changes,” said Panmao Zhai, Co-Chair of IPCC Working Group I.

The report highlights a number of climate change impacts that could be avoided by limiting global warming to 1.5°C compared to 2°C, or more. For instance, by 2100, global sea level rise would be 10 cm lower with global warming of 1.5°C compared with 2°C. The likelihood of an Arctic Ocean free of sea ice in summer would be once per century with global warming of 1.5°C, compared with at least once per decade with 2°C. Coral reefs would decline by 70-90 percent with global warming of 1.5°C, whereas virtually all (> 99 percent) would be lost with 2°C.

“Every extra bit of warming matters, especially since warming of 1.5°C or higher increases the risk associated with long-lasting or irreversible changes, such as the loss of some ecosystems,” said Hans-Otto Pörtner, Co-Chair of IPCC Working Group II.

Limiting global warming would also give people and ecosystems more room to adapt and remain below relevant risk thresholds, added Pörtner. The report also examines pathways available to limit warming to 1.5°C, what it would take to achieve them and what the consequences could be. “The good news is that some of the kinds of actions that would be needed to limit global warming to 1.5°C are already underway around the world, but they would need to accelerate,” said Valerie Masson-Delmotte, Co-Chair of Working Group I.

 

Rapid transitions including the  transport sector required

The report finds that limiting global warming to 1.5°C would require “rapid and far-reaching” transitions in land, energy, industry, buildings, transport, and cities. Global net human-caused emissions of carbon dioxide (CO2) would need to fall by about 45 percent from 2010 levels by 2030, reaching ‘net zero’ around 2050. This means that any remaining emissions would need to be balanced by removing CO2 from the air.

“Limiting warming to 1.5°C is possible within the laws of chemistry and physics but doing so would require unprecedented changes,” said Jim Skea, Co-Chair of IPCC Working Group III.

The decisions we make today are critical in ensuring a safe and sustainable world for everyone, both now and in the future, said Debra Roberts, Co-Chair of IPCC Working Group II.  “This report gives policymakers and practitioners the information they need to make decisions that tackle climate change while considering local context and people’s needs. The next few years are probably the most important in our history,” she said.

The IPCC is the leading world body for assessing the science related to climate change, its impacts and potential future risks, and possible response options. The report was prepared under the scientific leadership of all three IPCC working groups. Working Group I assesses the physical science basis of climate change; Working Group II addresses impacts, adaptation and vulnerability; and Working Group III deals with the mitigation of climate change.

The Paris Agreement adopted by 195 nations at the 21st Conference of the Parties to the UNFCCC in December 2015 included the aim of strengthening the global response to the threat of climate change by “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels.”

The report’s full name is ‘Global Warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty’.
For more information, including links to the IPCC reports, go to: www.ipcc.ch

Source: IPCC

UTA: Limiting Global Warming by Removing CO2 from the Atmosphere to Make Fuel

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

One-step process to convert carbon dioxide and water directly into renewable liquid hydrocarbon fuels

Arlington, Texas, February 22, 2016: A team of University of Texas at Arlington (UTA) chemists and engineers have proven that concentrated light, heat and high pressures can drive the one-step conversion of carbon dioxide (CO2) and water directly into useable liquid hydrocarbon fuels. This simple and inexpensive new sustainable fuels technology could potentially help limit global warming by removing carbon dioxide from the atmosphere to make fuel. The process also reverts oxygen back into the system as a byproduct of the reaction, with a clear positive environmental impact, researchers said.

“Our process also has an important advantage over battery or gaseous-hydrogen powered vehicle technologies as many of the hydrocarbon products from our reaction are exactly what we use in cars, trucks and planes, so there would be no need to change the current fuel distribution system,“ said Frederick MacDonnell, UTA interim chair of chemistry and biochemistry and co-principal investigator of the project.

In an article published today in the Proceedings of the National Academy of Sciences titled “Solar photothermochemical alkane reverse combustion,” the researchers demonstrate that the one-step conversion of carbon dioxide and water into liquid hydrocarbons and oxygen can be achieved in a photothermochemical flow reactor operating at 180° C to 200° C and pressures up to 6 atmospheres.

“We are the first to use both light and heat to synthesize liquid hydrocarbons in a single stage reactor from carbon dioxide and water,” said Brian Dennis, UTA professor of mechanical and aerospace engineering and co-principal investigator of the project. “Concentrated light drives the photochemical reaction, which generates high-energy intermediates and heat to drive thermochemical carbon-chain-forming reactions, thus producing hydrocarbons in a single-step process.”

Duane Dimos, UTA vice president for research commended the researchers on their success. “Discovering a one-step process to generate renewable hydrocarbon fuels from carbon dioxide and water is a huge achievement,“ Dimos said. “This work strengthens UTA’s reputation as a leading research institution in the area of Global Environmental Impact, as laid out in our Strategic Plan 2020.”

The hybrid photochemical and thermochemical catalyst used for the experiment was based on titanium dioxide, a white powder that cannot absorb the entire visible light spectrum.

“Our next step is to develop a photo-catalyst better matched to the solar spectrum,” MacDonnell said. “Then we could more effectively use the entire spectrum of incident light to work towards the overall goal of a sustainable solar liquid fuel.“

The authors envision using parabolic mirrors to concentrate sunlight on the catalyst bed, providing both heat and photo-excitation for the reaction.  Excess heat could even be used to drive related operations for a solar fuels facility, including product separations and water purification.

The research was supported by grants from the National Science Foundation and the Robert A. Welch Foundation. Wilaiwan Chanmanee, postdoctoral research associate in mechanical and aerospace engineering, and Mohammad Fakrul Islam, graduate research assistant and Ph.D. candidate in the department of Chemistry and Biochemistry at UTA, also participated in the project.

MacDonnell and Dennis have received more than $2.6 million in grants and corporate funding for sustainable energy projects over the last four years.

MacDonnell and Dennis’ investigations also are focused on converting natural gas for use as high-grade diesel and jet fuel. The researchers developed the gas-to-liquid technology in collaboration with an industrial partner in UTA’s Center for Renewable Energy and Science Technology, or CREST, lab, and are now working to commercialize the process.

MacDonnell also has worked on developing new photocatalysts for hydrogen generation, with the goal of creating an artificial photosynthetic system which uses solar energy to split water molecules into hydrogen and oxygen. The hydrogen could then be used as a clean fuel.

MacDonnell joined the College of Science in 1995, following his postdoctoral fellowship at Harvard. He earned his Ph.D. in inorganic chemistry from Northwestern University.

Dennis joined the College of Engineering in 2004 as an assistant professor. He earned his Ph.D. in Aerospace Engineering at Pennsylvania State University and completed his postdoctoral work in Environmental Engineering at the University of Tokyo.

See more at: https://www.uta.edu/news/releases/2016/02/MacDonnell-Dennis-Fuels-PNAS.php#sthash.E4Hsqpc9.dpuf

Source: The University of Texas at Arlington