NASA Advances Concepts for Next-gen Aircraft

sustainable aviation

Higher efficiency, less noise and fewer emissions!

Cleveland, November 7, 2017: An aviation renaissance, one focused on energy efficiency and economic impact, is on the horizon, and it’s changing how engineers look at aircraft power and design.

Although the aircraft industry continues to adopt innovative technologies, which are making current aircraft more energy efficient, there’s new interest in exploring alternative propulsion systems and energy sources. This new interest presents an opportunity to develop cutting-edge technologies that will dramatically reduce fuel usage, while opening up potential new markets and business opportunities for American companies and carriers.

“I feel we are at a tipping point in commercial aviation,” says Jim Heidmann, manager of NASA’s Advanced Air Transport Technology Project (AATT). “We are exploring and developing game-changing technologies and concepts for aircraft and propulsion systems that can dramatically improve efficiency and reduce environmental impact and accelerate the introduction of new aircraft.”

To provide better efficiency with less noise and fewer emissions, NASA is working with the aviation industry and academia to develop unique vehicle concepts that will use different fuselage shapes; longer, skinnier and more blended wings; innovative materials and components; and highly-integrated propulsion (engine) systems.

NASA aims to accelerate the final testing and validation of these advanced concepts and technologies through its New Aviation Horizons initiative. This initiative outlines the development of a series of experimental planes (X-planes), which will achieve the agency’s aircraft-level metrics for fuel consumption, emissions and noise.

The work has already begun under New Aviation Horizons as NASA is preparing to build and fly the first such X-plane – a low-boom supersonic flight demonstrator.

A turboelectric aircraft configuration is among several candidates for future subsonic transport X-planes that will prove the benefits of these advanced technologies in piloted flight within the next decade.

STARC Contrast: Smaller engines provide more power

One of the most pivotal areas of commercial aviation’s transformation centers around propulsion, and a team of engineers at NASA’s Glenn Research Center in Cleveland is conducting cutting-edge research into high-pressure-ratio compact gas turbine engines, low-emission combustors, electric-enhanced propulsion and boundary-layer ingesting (BLI) engines.

“We believe global competition and international certification standards will drive reduced fuel consumption and more efficient aircraft and propulsion concepts that may use cleaner forms of energy,” said Heidmann. “We also see the potential emergence of alternative modes of commercial transport, such as on-demand and flight service between rarely-traveled locations, both of which would represent new markets and potential beneficiaries of revolutionary propulsion technologies.”

Some of the key propulsion system advances the NASA Glenn team is pursuing converge in an aircraft concept study called STARC-ABL (single-aisle turboelectric aircraft with an aft [at the rear of the aircraft] boundary-layer propulsor).

The STARC-ABL concept, developed by NASA’s Jim Felder and Jason Welstead, is under consideration as one of NASA’s future X-planes. It looks similar to the proven tube-and-wing aircraft you see every day. But, unlike those aircraft, a significant amount of electrical power, approximately three megawatts, is used for turboelectric propulsion, in addition to the electrical operation of subsystems like flight controls, avionics and de-icing.

Imagine a Boeing 737, but with slightly smaller engines. Not a dramatic design departure, but STARC-ABL’s tail features a “T-tail” horizontal stabilizer configuration with a BLI ducted fan on the tail, which is driven purely by electric power derived from generators mounted to the underwing engines.

The wing-mounted engines supply 80 percent of the thrust required during takeoff and 55 percent at cruise, while the tail-mounted, all-electric BLI turbofan accounts for remaining thrust. Researchers predict a potential fuel consumption improvement of roughly 10 percent using this innovative system.

 

Next Step: Collaboration leads to solutions

While NASA is preparing for initial ground tests of a subscale STARC-ABL concept later this fall at NASA’s Electric Aircraft Testbed (NEAT) at Plum Brook Station in Sandusky, Ohio, several vehicle-level development challenges remain: How to balance aerodynamic efficiency, appropriately optimize the engines and aft BLI fan, validate the BLI benefits, store energy, compensate for additional weight, and meet safety and operational requirements.

To further investigate the challenges surrounding the hybridization of commercial aircraft, NASA is looking to industry and academic expertise for solutions.

NASA recently awarded 12-month contracts to Boeing, teamed with Georgia Tech, and Liberty Works, with ES Aero, to develop preliminary single-aisle, 150-seat aircraft designs using promising electric-enhanced propulsion and vehicle configuration concepts.

“During the 12-month cycle, we’ll work with the teams to take a deep dive into their hybrid and turboelectric aircraft concepts,” said Amy Jankovsky, NASA’s AATT subproject manager. “These concepts will provide in-depth, detailed analyses of the propulsion and electrical systems, and we will recommend technology development paths for their concepts.”

The year-long study will also reveal new development approaches and any unforeseen technological hurdles, as well as any safety and flight certification challenges that could get an aircraft like STARC-ABL or other next-generation, hybrid or turboelectric aircraft concepts aloft within 20 years.

And while those proposed industry concepts could look like STARC-ABL, the real objective is to transform commercial aviation by using new propulsion technologies that meet NASA’s aircraft-level requirements of energy use, life-cycle carbon, landing-and-takeoff emissions and noise.

 

Ready for Takeoff: Development, testing, flight

Final reports from the industry study will outline hybrid-electric and conventional single-aisle aircraft concept designs, technology roadmaps for the major electrical systems and aircraft subsystems, and the evaluation of the concepts’ performance against NASA aircraft metrics.

“As we move forward, we’d like to further develop the powertrains for these and any other concepts that may prove viable by building and testing them at NEAT and other NASA facilities,” said Jankovsky. “We’ll identify key performance parameters for components such as motors, generators and power electronics, and any wind tunnel, altitude and other ground tests and flight demonstrations that are appropriate.”

Ultimately, NASA hopes to contribute to a next-generation aircraft that will substantially reduce fuel burn, noise and emissions. Many researchers feel we are only a few steps away from a major aviation revolution, and that a commercial aircraft using NASA-developed, hybrid-electric or turboelectric propulsion technology could be flying to an airport near you in the not too distant future.

Source: NASA, Glenn Research Center

Pratt & Whitney Partners with NASA to Create Green Future for Aviation

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

Working on engines producing up to 75% fewer emissions

East Hartford, CT, February 23, 2017:  Pratt & Whitney has been chosen by NASA’s Aeronautics Research Mission Directorate to be a part of NASA’s Ultra-High Bypass Advanced Nacelle Technologies Flight Demonstration. The goal of the partnership is to develop engines for commercial airliners that produce less pollution and are more fuel-efficient.
This is not the first time that Pratt & Whitney has worked with NASA to advance green engine technologies. The two organizations partnered a number of times during the 1990s and 2000s, and together, they have made significant advancements in fuel-efficient technologies. A project in the 1990s through NASA’s Advanced Subsonic Technology program led to the development of base technology for fuel-efficient fans. Another partnership in 2005 through the Space Act Agreement gave Pratt & Whitney access to NASA expertise and facilities for engine testing.
The most notable result of the P&W-NASA partnership is the development of technology for the PurePower® Geared Turbofan™ (GTF) family of engines. The GTF engine improves efficiency by over 16 percent and increases fuel savings while dramatically reducing noiseby 50 percent, a profound advancement for the aeronautics industry. The success of the partnership between the two organizations, particularly the development of technology for the GTF, has created even more opportunities for collaboration.
Pratt & Whitney is currently working with NASA on the ‘New Aviation Horizons’ initiative, through which a new generation of revolutionary “X-planes” featuring advanced technologies will be designed, built and tested over a 10-year period.
Pratt & Whitney engines are included on four out of five of the experimental aircraft designs. According to NASA, the project aims “to develop aircraft that use 50 percent less fuel, produce 75 percent fewer emissions, and are notably more quiet than today’s vehicles.” Pratt & Whitney is making large contributions to this initiative that aims to have futuristic aircrafts in the sky as soon as the 2020s.
With the new three-year Ultra-High Bypass Advanced Nacelle Technologies partnership, Pratt & Whitney, UTC Aerospace Systems and Boeing will look to build on the innovations of the past, and develop the physics for a new generation of GTF engines that will be even more efficient and quiet. With technologies based on the learning developed through this partnership, the goal is to improve efficiency by another 10 percent above the 16 percent efficiency improvement from the first generation GTF engines. 
“The goal is to build on the legacy of our partnership with NASA to work on improving our geared turbofan engine technologies,” said Michael Winter, senior fellow, Advanced Technologies, Pratt & Whitney. “Our work with NASA will help us extend the technology and move deeper into the design space.”
This partnership will likely have a large impact on the future of our world. With new advancements from this partnership, we may see the environmental cost of air transport reduced as a result of increased fuel savings, or home and business owners near airports no longer negatively affected by the constant roar of airplanes overhead.
“This partnership is not only good for our business, but for the planet,” Winter said. “Our ability to technically differentiate our products while also doing good for our world defines the legacy we leave. As engineers, what more could we hope for?” 
Source: Pratt & Whitney

NASA’s New X-plane Program

X-plane: Preliminary design work to build a quieter supersonic passenger jet

Arlington, February 29, 2016: The return of supersonic passenger air travel is one step closer to reality with NASA’s award of a contract for the preliminary design of a “low boom” flight demonstration aircraft. This is the first in a series of ‘X-planes’ in NASA’s New Aviation Horizons initiative, introduced in the agency’s Fiscal Year 2017 budget.

NASA Administrator Charles Bolden announced the award at an event Monday at Ronald Reagan Washington National Airport in Arlington, Virginia: “NASA is working hard to make flight greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently,” said Bolden. “To that end, it’s worth noting that it’s been almost 70 years since Chuck Yeager broke the sound barrier in the Bell X-1 as part of our predecessor agency’s high speed research. Now we’re continuing that supersonic X-plane legacy with this preliminary design award for a quieter supersonic jet with an aim toward passenger flight.”

NASA selected a team led by Lockheed Martin Aeronautics Company of Palmdale, California, to complete a preliminary design for Quiet Supersonic Technology (QueSST). The work will be conducted under a task order against the Basic and Applied Aerospace Research and Technology (BAART) contract at NASA’s Langley Research Center in Hampton, Virginia.

After conducting feasibility studies and working to better understand acceptable sound levels across the country, NASA’s Commercial Supersonic Technology Project asked industry teams to submit design concepts for a piloted test aircraft that can fly at supersonic speeds, creating a supersonic “heartbeat” — a soft thump rather than the disruptive boom currently associated with supersonic flight.

“Developing, building and flight testing a quiet supersonic X-plane is the next logical step in our path to enabling the industry’s decision to open supersonic travel for the flying public,” said Jaiwon Shin, associate administrator for NASA’s Aeronautics Research Mission.

Lockheed Martin will receive about $20 million over 17 months for QueSST preliminary design work. The Lockheed Martin team includes subcontractors GE Aviation of Cincinnati and Tri Models Inc. of Huntington Beach, California.

The company will develop baseline aircraft requirements and a preliminary aircraft design, with specifications, and provide supporting documentation for concept formulation and planning. This documentation would be used to prepare for the detailed design, building and testing of the QueSST jet. Performance of this preliminary design also must undergo analytical and wind tunnel validation.

In addition to design and building, this Low Boom Flight Demonstration (LBFD) phase of the project also will include validation of community response to the new, quieter supersonic design. The detailed design and building of the QueSST aircraft, conducted under the NASA Aeronautics Research Mission Directorate’s Integrated Aviation Systems Program, will fall under a future contract competition.

NASA’s 10-year New Aviation Horizons initiative has the ambitious goals of reducing fuel use, emissions and noise through innovations in aircraft design that departs from the conventional tube-and-wing aircraft shape.

The New Aviation Horizons X-planes will typically be about half-scale of a production aircraft and likely are to be piloted. Design-and-build will take several years with aircraft starting their flight campaign around 2020, depending on funding.

X-plane Quiet Supersonic Transport (QueSST)

This is an artist’s concept of a possible Low Boom Flight Demonstration Quiet Supersonic Transport (QueSST) X-plane design. The award of a preliminary design contract is the first step towards the possible return of supersonic passenger travel – but this time quieter and more affordable. Credits: Lockheed Martin

For more information about NASA’s aeronautics research, please visit: http://www.nasa.gov/aero

Source: NASA