Bedeutung flüssiger Energieträger für die Energiewende

IASA: Nachhaltige Luftfahrt - Sustainable Aviation
Energiewende | Donnerstag, 07.06.2018

Flüssige Energieträger wie Benzin werden weiterhin benötigt. Eine nahezu treibhausgasneutrale Alternative zu fossilen Flüssigkeiten sind „E-Fuels“. Ihre Perspektiven in der Energiewende hat Prognos für die Verbände der Mineralölwirtschaft untersucht.

©iStock – GAPS

Treibhausgasneutrale flüssige Energieträger können erzeugt werden, indem erneuerbarer Strom mit Hilfe von Elektrolyse-Wasserstoff und Kohlenstoff in einen flüssigen Energieträger (Power-to-Liquid, PtL) umgewandelt wird. Der Kohlenstoff kann etwa aus der Luft oder aus Biomasse gewonnen werden (Power-and-Biomass-to-Liquid, PBtL). Diese sogenannten E-Fuels sind für eine weitgehend klimaneutrale Energieversorgung aus heutiger Sicht unverzichtbar.

Zudem könnten sie in Zukunft aus Sicht der Verbraucher in bestimmten Anwendungen preislich mit treibhausgasneutralen Strom-Angeboten konkurrieren – und wären anschlussfähig an die heute vorhandene Infrastruktur.

Zu diesem Ergebnis kommt eine Studie im Auftrag der Verbände der Mineralölwirtschaft, die Prognos zusammen mit Fraunhofer UMSICHT und dem Deutschen Biomasseforschungszentrum (DBFZ) erstellt hat.

PtL-Treibstoff

Schematische Darstellung des Fischer-Tropsch-Verfahrens zur Erzeugung von PtL (Quelle: Darstellung aus der Studie)

Prognos hat den zukünftigen Bedarf an flüssigen Energieträgern in zwei Szenarien abgeschätzt. Dabei wurde von einem begrenzten Ausbau erneuerbarer Energien im Inland und einer nur „wie bisher“ wachsenden Energieeffizienz ausgegangen.

Das Ergebnis: Im Jahr 2050 benötigt allein der internationale Luft- und Schiffsverkehr Deutschlands ca. 550 Petajoule Energie. Wird PtL als Lösungsstrategie in allen Sektoren eingesetzt, werden bis zu 2000 Petajoule gebraucht. Weitere rund 500 Petajoule könnten Rohstoff für die Chemie sein.

Zusammen entspricht das rund 60 Millionen Tonnen klassischer Raffinerieprodukte. Zum Vergleich: Der heutige Mineralölabsatz in Deutschland liegt bei rund 110 Millionen Tonnen (2016). Die nachfolgende Abbildung zeigt für das Szenario PtX 95 mit ambitioniertem Klimaschutz (Reduktion der Treibhausgase um 95 %), wie hoch der Bedarf an PtL ausfallen könnte.

Energiebedarf der Luftfahrt bis 2050

1 PJ (Petajoule) = 1012 Kilojoule (Quelle der Grafik: Abbildung aus der Studie)

Da PtL-Energieträger gut speicher- und transportierbar sind, können sie in den sonnen- und windreichen Regionen der Welt – günstiger als in Deutschland – erzeugt werden. Für synthetisches Rohöl, das mit PtL-Technologie im Ausland gewonnen wird, erwarten die Autoren im Jahr 2050 inflationsbereinigt Produktionskosten von ca. 1,30 Euro pro Liter. Unter sehr günstigen Bedingungen wären auch 70 Cent pro Liter erreichbar.

Damit kann PtL für Verbraucher je nach Anwendung gegenüber rein strombasierten Lösungen auch preislich wettbewerbsfähig sein. Voraussetzung hierfür ist ein groß-industrieller Einstieg in die PtL-Technologie, damit die in der Studie angenommenen Lerneffekte erzielt und Kosten gesenkt werden können. Zudem sollte PtL zudem so effizient wie möglich eingesetzt werden.

Erheblicher Kapitaleinsatz und internationale Kooperationen nötig

Um diese Vorteile der flüssigen Energieträger für die deutsche Energiewende nutzbar zu machen, sind aber zwei komplexe und kapitalintensive Vorhaben nötig: Der Bau von großen Wind- sowie Solarparks einerseits und andererseits die Errichtung von integrierten Produktionsanlagen aus Kohlendioxid-Abscheidung, ggf. Meerwasserentsalzung, Elektrolyse und Synthese. Hierzu bedarf es erheblichen Kapitaleinsatzes und internationaler Kooperation.

Roadmap für die Markteinführung

Zu Markteinführung empfehlen die Studienautoren unter anderem eine Roadmap zu entwickeln, Forschungs- und Entwicklungskapazitäten auszubauen und einen allmählichen, aber stetigen Markthochlauf anzustreben. Hierfür seien – je nach Phase – verschiedene regulatorische und ökonomische Maßnahmen und Instrumente geeignet und notwendig.

Unternehmen und Wissenschaft sind gefragt, Forschungs- und Entwicklungsanstrengungen zu erhöhen und Optionen zu entwickeln. Insbesondere die Kohlendioxidabscheidung aus der Luft, die Elektrolyse und Synthese sind wichtige Forschungsfelder.

Hintergrund

E-Fuels basieren auf Power-to-Liquid (PtL)-Technologien. Dabei wird Strom aus erneuerbaren Energien mithilfe von Elektrolyse-Wasserstoff und einer Synthese mit Kohlenstoff in flüssige Energieträger umgewandelt. Dabei handelt es sich um die derzeit aussichtsreichsten Verfahren, um flüssige Energieträger großindustriell treibhausgasneutral zu produzieren.

Wie sich schrittweise CO2-neutrale flüssige Energieträger herstellen lassen, zeigt der Zwischenbericht der Untersuchung auf.

Zur Studie

Quelle: Prognos


 

Handlungsempfehlung: Power-to-Liquid-Technologien schaffen

Power-to-Liquid
 BERLIN

dena-Leitstudie Integrierte Energiewende: Deutschland braucht klares Klimaziel 2050

Zielkorridor von 80 bis 95 Prozent weniger CO2-Emissionen ist mit verschiedenen Szenarien erreichbar / Starke Steigerung bei Energieeffizienz und erneuerbaren Energien nötig / Synthetische Kraft- und Brennstoffe ergänzen Elektrifizierung / Kuhlmann: „Integrierte Energiewende braucht integrierte Politikkonzepte. Es gibt gute Gründe, die Gestaltung der Energie- und Klimaschutzpolitik neu zu betrachten.“

„Eine sektorübergreifende, systemische Betrachtung möglicher Transformationspfade führt zu anderen Ergebnissen, als eine sektorspezifische. Bei der Ausrichtung der Energie- und Klimaschutzpolitik muss das berücksichtigt werden. Die dena-Leitstudie ist dafür eine gute Grundlage“, sagte Andreas Kuhlmann, Vorsitzender der dena-Geschäftsführung, bei der Vorstellung der dena-Leitstudie am Montag in Berlin. „Unsere Szenarien zeigen: Nicht alles, was auf den ersten Blick als naheliegende Lösung erscheint, führt unter Berücksichtigung der Wechselwirkungen mit anderen Sektoren zum gewünschten Ziel. Daraus folgt auch: Es reicht nicht, heute nur über die Klimaziele 2030 zu diskutieren. Abhängig vom Ambitionsniveau für das Jahr 2050, sieht schon 2030 sehr unterschiedlich aus. Und die Ziele für das Jahr 2030 werden mit Sicherheit verfehlt, wenn nicht bereits in dieser Legislaturperiode entsprechende Maßnahmen auf den Weg gebracht werden. Eine Konkretisierung der Ziele ist für Unternehmen und für die Gestaltung des politischen Rahmens dringend geboten. Die dena-Leitstudie ist eine Einladung an Politik, Gesellschaft, Wirtschaft und Wissenschaft, die notwendige Debatte zügig zu führen und Entscheidungen zu treffen. Wenn wir es gemeinsam angehen, können wir praktikable und breit akzeptierte Lösungen finden und die Energiewende als gesamtgesellschaftliches Projekt zum Erfolg führen.“

Technologiemixszenarien sind robuster und führen zu geringeren Mehrkosten

Die dena hat zusammen mit ihren Studienpartnern vier praxisnahe Szenarien erarbeitet, die Reduktionsziele von entweder 80 oder 95 Prozent bis 2050 erreichen: zwei Elektrifizierungsszenarien gehen davon aus, dass der Verbrauch in den Sektoren Gebäude, Industrie und Verkehr weitestgehend mit Strom gedeckt wird, zum Beispiel durch verstärkten Einsatz von Wärmepumpen, strombasierten Produktionsanlagen und Elektroantrieben; zwei Technologiemixszenarien gehen davon aus, dass ein breiteres Spektrum an Technologien und Energieträgern zum Einsatz kommt, darunter mehr gasförmige und flüssige Kraft- und Brennstoffe, die mithilfe von erneuerbaren Energien synthetisch erzeugt werden. Ein Referenzszenario, das die aktuellen Rahmenbedingungen ambitioniert fortschreibt, reduziert die Emissionen hingegen nur um 62 Prozent.

Die Technologiemixszenarien erweisen sich im Vergleich als robuster, weil sie stärker auf bestehende Infrastrukturen aufbauen und auf mehr gesellschaftliche Akzeptanz stoßen. Sie sind flexibler und können neue Technologieentwicklungen besser integrieren. In den Elektrifizierungsszenarien sind dagegen mehr Flächen für den Ausbau von Wind- und Solaranlagen und ein stärkerer Ausbau des Stromnetzes erforderlich. Der Gebäudebestand muss stärker energetisch saniert werden, um mehr Wärmepumpen effizient nutzen zu können. Insgesamt sind die Transformationspfade mit einem breiten Technologie- und Energieträgermix bis 2050 unter den getroffenen Annahmen um bis zu 600 Milliarden Euro kostengünstiger als solche, die verstärkt auf strombasierte Anwendungen setzen.

Andreas Kuhlmann betonte, dass es bei der Energiewende weniger um Kosten als um Investitionen in die Zukunft gehe: „Energiewende und Klimaschutz sind gesamtgesellschaftliche Fortschrittsprojekte von enormer Tragweite und Komplexität. Wenn wir eine Energiewende wollen, die möglichst wirtschaftlich ist und von der Gesellschaft getragen wird, sollten wir heute marktorientierte Rahmenbedingungen für einen breiten Technologiemix schaffen. Nur so werden wir die vielfältigen Potenziale unterschiedlicher Technologien ausreichend nutzen können. Das ist Grundvoraussetzung für die Erreichbarkeit der Ziele.“

Die Klimazielszenarien: Elektrifizierung und Technologiemix jeweils mit 80- oder 95-Prozent-Klimaziel

Mehr Tempo bei Energieeffizienz und erneuerbaren Energien

Für alle Klimazielszenarien gilt: Die Steigerung der Energieeffizienz und der Ausbau der erneuerbaren Energien sind Grundvoraussetzungen für den Erfolg. In beiden Bereichen reicht das bisherige Tempo nicht aus. Bei einem jährlichen Wirtschaftswachstum von einem Prozent rechnet die dena-Leitstudie mit einer Reduzierung des Endenergieverbrauchs bis 2050 im Vergleich zu 2015 um bis zu 64 Prozent im Gebäudesektor, bis zu 52 Prozent im Verkehr und bis zu 18 Prozent in der Industrie. Vor allem in der Industrie macht sich bemerkbar, dass die Energieeffizienz zwar deutlich zunimmt, gleichzeitig aber das Wirtschaftswachstum zu einer höheren Nachfrage führt.

Bei den erneuerbaren Energien setzt die dena-Leitstudie darauf, dass der Ausbau von Windenergie an Land und Photovoltaik schneller vorangeht als bisher geplant. Allein für diese beiden Technologien ist ein jährlicher Nettozubau von 6 bis 7,6 Gigawatt erforderlich. Das ist ein großer Unterschied zum gesetzlich vorgesehenen Ausbaukorridor von jährlich 5,4 Gigawatt brutto: 2,9 Gigawatt für Windenergie an Land, 2,5 Gigawatt für Photovoltaik. Eine Herausforderung wird es sein, freie Flächen für den Ausbau von Windkraftanlagen an Land zu finden. Umso wichtiger könnte ab 2030 der Ausbau der Windenergie auf See werden.

Dritte Säule: synthetische, erneuerbare Kraft- und Brennstoffe

In allen Klimazielszenarien spielen synthetische, erneuerbare Kraft- und Brennstoffe eine wichtige Rolle. Je nach Szenario decken sie im Jahr 2050 einen Bedarf von 150 bis 908 Terawattstunden. Damit schließen sie die Lücke, die nicht durch Energieeffizienz oder die direkte Nutzung von Strom aus erneuerbaren Energien abgedeckt werden kann, insbesondere, wenn an anderer Stelle nicht die erwarteten Ziele erreicht werden, etwa beim Ausbau von Windkraft an Land, bei der Sanierung von Gebäuden oder bei der Elektrifizierung des Schwerlastverkehrs.

Der erneuerbare Wasserstoff und die auf ihm aufbauenden Energieträger wie Methan und synthetische Öle machen es möglich, erneuerbaren Strom zu speichern und international zu handeln. Die dena-Leitstudie rechnet damit, dass Deutschland seinen Bedarf zum großen Teil mit Importen decken wird – zum Beispiel aus Nordafrika, weil dort die Produktionskosten günstiger und die Flächenpotenziale größer sind. Aber auch Deutschland hat Potenziale, die stärker genutzt werden sollten. Um die Entwicklung des Marktes anzustoßen, sollte Deutschland bis 2030 Kapazitäten für die Herstellung von erneuerbarem Wasserstoff im Umfang von 15 Gigawatt aufbauen.

Stakeholderdialog soll Grundlagen der Versorgungssicherheit klären

Eine besondere Herausforderung ist die Gewährleistung der Versorgungssicherheit in einem weitgehend auf erneuerbaren Energien basierenden Stromsystem. Trotz Energieeffizienz werden die nachgefragte Strommenge und die Spitzenlast bis 2050 in den Klimazielszenarien weiter steigen. Gründe dafür sind das anhaltende Wirtschaftswachstum und die zunehmende Elektrifizierung in den Verbrauchssektoren. Zusätzlicher Handlungsbedarf entsteht, weil durch den Atomausstieg und den absehbaren Rückgang der Kohlekraft in wenigen Jahren deutlich weniger wetterunabhängige Kraftwerkskapazitäten zur Verfügung stehen.

Zur Deckung der gesicherten Leistung – also der Leistung, die jederzeit verfügbar sein muss – kommen verschiedene Optionen infrage. In der dena-Leitstudie übernehmen Gaskraftwerke, die zunehmend erneuerbare Brennstoffe nutzen, in allen Szenarien einen Großteil der gesicherten Leistung, allerdings nur mit relativ wenig Betriebsstunden. Hinzu kommen Speicher, Laststeuerung (Demand Side Management), erneuerbare Energien und Stromimporte. Die Herausforderungen und Optionen werden von betroffenen Akteuren sehr unterschiedlich eingeschätzt. Um rasch zu einem gemeinsamen Verständnis zu gelangen, empfiehlt die dena-Leitstudie der Bundesregierung, einen eigenen Dialogprozess zu den Grundlagen der Versorgungssicherheit im zukünftigen Energiesystem einzurichten.

Für die Nutzung von Kohle hat die dena-Leitstudie in ihrer Modellierung kein festes Ausstiegsdatum vorgegeben. Die Kohleverstromung geht in den Klimazielszenarien bis 2030 um die Hälfte zurück und bis 2050 komplett aus dem Markt, weil neue Rahmenbedingungen die Vermeidung von CO2-Emissionen belohnen.

Integrierte Energiewende erfordert integrierte Politikkonzepte

Die dena-Leitstudie arbeitet mit dem Leitbegriff der integrierten Energiewende. Ziel dabei ist es, die Energiewende als Ganzes zu betrachten, die verschiedenen Technologien, Infrastrukturen und Märkte aus den Sektoren Energie, Industrie, Gebäude und Verkehr aufeinander abzustimmen und in einem intelligenten Energiesystem zusammenzubringen. Die dena-Leitstudie hat diesen sektorübergreifenden, systemischen Ansatz in einem breiten Partnerkreis angewandt und dabei die Klimaziele für das Jahr 2050 (80 bis 95 Prozent CO2-Reduzierung), vor allem aber auch für das Jahr 2030 (55 Prozent CO2-Reduzierung) vorgegeben.

„Unser gemeinsames Ziel war es, die systemischen Zusammenhänge besser zu verstehen, die bestmöglichen Transformationspfade zur Erreichung der Klimaziele zu identifizieren sowie Hinweise und Handlungsempfehlungen zu geben“, betonte Andreas Kuhlmann. „Zugleich wollten wir Marktkenntnisse und Kompetenzen derjenigen berücksichtigen, die die Transformationsprozesse mit ihren Unternehmen am Ende gestalten müssen. Diese integrierende Bottom-up-Sicht brauchen wir, um die integrierte Energiewende zu gestalten und neue, integrierte Politikkonzepte zu entwickeln, die auch die internationalen Zusammenhänge berücksichtigen. Das System von Steuern, Abgaben und Umlagen im Energie- und Klimaschutzbereich ist verkrustet. Wir brauchen klare Zielvorgaben und marktorientierte Rahmenbedingungen, aufbauend auf Innovation, Wettbewerb und Unternehmergeist. Damit können wir den bestmöglichen Fortschritt erzielen. Den einen Pfad zur Zielerreichung können wir heute noch nicht genau vorhersehen. Vielmehr müssen wir offen sein für die vielfältigen Technologieoptionen. Dafür bedarf es eines starken politischen Willens und einer ausgereiften Urteilskraft. Mit Mut und Entschlossenheit können wir viel erreichen.“

Power-to-Liquid

zum Download der Studie

Quelle: dena

Nachhaltige Treibstoffe für die Luftfahrt

Power-to-Liquid

Remagen, 25. Mai 2018

Was treibt die Luftfahrt an in 20 Jahren?

Unter diesem Titel stand der Vortrag von IASA-Vorstand Michael Wühle, der zu Beginn der Betriebsleiterbesprechung 2018 der Fernleitungsbetriebsgesellschaft (FBG) die Teilnehmer auf den Tag thematisch einstimmte.

Zuvor betonte der FBG-Geschäftsführer Horst Saal in seiner Begrüßung die Wichtigkeit für das Unternehmen, am heutigen Tag einen intensiven Blick auf die wahrscheinlichen Entwicklungen und Trends zu werfen, die für die Fernleitungsbetriebsgesellschaft in den nächsten 20 Jahren relevant sind oder werden. Horst Saal spannte einen weiten Bogen vom Klimawandel und seinen Folgen, der wirtschaftlichen Entwicklung in Asien und Afrika, Hunger und Not in vielen Teilen der Welt, der Automatisierung bis zu Erneuerbaren Energien und nachhaltigen Treibstoffen.

Im folgenden Vortrag von Michael Wühle ging es dann auch hauptsächlich um nachhaltige Treibstoffe für die Luftfahrt. Zuvor erläuterte der Referent anhand aktueller Zahlen über das Wachstum der Luftfahrt, dass deren Klimaziele mit neuen Flugzeugkonstruktionen, neuen Triebwerken und Werkstoffen unmöglich erreicht werden können. Die so erreichbaren Treibstoff- und damit Emissionseinsparungen werden durch das ungebrochene Wachstum (+7,6% an verkauften Passagierkilometern in 2017) mehr als kompensiert werden.

Die Fachleute sind sich einig, so Michael Wühle, dass die Klimaziele der Luftfahrt weltweit nur über die Treibstofffrage gelöst werden können. Bio-Treibstoffe mindern zwar die CO2-Emissionen und sind auch schon verfügbar, durch das begrenzte Mengenpotenzial und den sogenannten Teller-Tank-Konflikt können sie jedoch nur einen sehr begrenzten Beitrag leisten. Elektro- und Hybridantriebe für Flugzeuge sind möglich und werden in wenigen Jahren geflogen werden. Der Referent erläuterte, dass aufgrund der 4-fach geringeren Energiedichte von Wasserstoff und wegen der 20-fach kleineren Speicherdichte von Lithium-Ionen-Akkus, bezogen auf das Kilogramm, die Reichweite solcher Flugzeuge auf Kurzstrecken und eine relative kleine Passagierzahl pro Flug begrenzt bleiben werde. Für die Mittel- und Langstrecke brauche es noch viele Jahre flüssige Treibstoffe mit der gleichen oder sogar höheren Energiedichte wie das jetzige fossile Kerosin.

Power-to-Liquid

Unter dem Begriff “Power-to-Liquid” (PtL) ist ein Verfahren zur Erzeugung synthetischer Treibstoffe aus Erneuerbaren Energien (EE) bekannt. Das EE-Kerosin der Zukunft wird ein PtL-Kerosin sein, da ist sich Michael Wühle sicher. Bei der Produktion von PtL-Treibstoffen wird Wasser mittels Strom aus Erneuerbaren Energien (z.B. Photovoltaik, Windkraft, Biogas, usw.) in seine Bestandteile Wasserstoff und Sauerstoff zerlegt. Mit dem Wasserstoff und CO2 (entweder aus der Atmosphäre oder durch Abscheidung aus Industrieanlagen) wird ein Synthesegas erzeugt und in einem nachfolgenden Reaktor in flüssigen Treibstoff umgewandelt, der chemisch nahezu identisch mit dem fossilen Gegenpart ist. Das Ergebnis ist in jedem Fall ein CO2-armer Treibstoff, der prinzipiell auch das Potenzial hat, CO2-neutral zu sein. Bereits heute ist ein solcher PtL-Treibstoff mit einem Volumenanteil von 50% für die Luftfahrt zugelassen. Herr Wühle stellte noch kurz das PtL-Projekt des Luftfahrtverbands IASA e.V. vor (siehe PtL-Impulskampagne) und lud die Teilnehmer der Betriebsleiterbesprechung ein, sich mit ihrer Expertise in Treibstofffragen in das Projekt einzubringen.

Kooperationsvereinbarung

Abschließend unterzeichneten Horst Saal und Michael Wühle eine Kooperationsvereinbarung zwischen beiden Organisationen. Die Kooperationspartner setzen sich dabei das Ziel, nachhaltige Strukturen und Projekte im Luftverkehr zu fördern, sowie nachhaltiges Handeln in sozialer, ökologischer, ökonomischer und partizipativer Hinsicht in allen Bereichen der Gesellschaft zu verankern. Hierzu unterstützen sich die Partner ab nun gegenseitig mit ihren Netzwerken und ihren Aktivitäten.

Power-to-Liquid

Horst Saal (FBG) und Michael Wühle (IASA) unterzeichnen den Kooperationsvertrag (von rechts nach links).

Quelle: IASA e.V.


 

Aim for 1 Billion Passengers to Fly on Sustainable Fuel Flights by 2025

sustainable aviation fuel

IATA set out an aim for one billion passengers to fly on flights powered by sustainable aviation fuel by 2025.

26 February 2018

Geneva – The International Air transport Association (IATA) set out an aim  for one billion passengers to fly on flights powered by a mix of jet fuel and sustainable aviation fuel (SAF) by 2025. This aspiration was identified on the tenth anniversary of the first flight to blend sustainable aviation fuel and ordinary jet fuel.

On 24 February 2008, a Virgin Atlantic Boeing 747 flew from London to Amsterdam with sustainable aviation fuel in one of its engines. The flight demonstrated the viability of drop-in biofuels, which can be blended with traditional jet fuel, using existing airport infrastructure. A flight completely powered by sustainable fuel has the potential to reduce the carbon emissions of that flight by up to 80%.

“The momentum for sustainable aviation fuels is now unstoppable. From one flight in 2008, we passed the threshold of 100,000 flights in 2017, and we expect to hit one million flights during 2020. But that is still just a drop in the ocean compared to what we want to achieve. We want 1 billion passengers to have flown on a SAF-blend flight by 2025. That won’t be easy to achieve. We need governments to set a framework to incentivize production of SAF and ensure it is as attractive to produce as automotive biofuels,” said Alexandre de Juniac, IATA’s Director General and CEO.

The push to increase uptake of SAF is being driven by the airline industry’s commitment to achieve carbon-neutral growth from 2020 and to cut net carbon emissions by 50% compared to 2005. A number of airlines, including Cathay Pacific, FedEx Express, JetBlue, Lufthansa, Qantas, and United, have made significant investments by forward-purchasing 1.5 billion gallons of SAF. Airports in Oslo, Stockholm, Brisbane and Los Angeles are already mixing SAF with the general fuel supply.

sustainable aviation fuel

On the present uptake trajectory it is anticipated that half a billion passengers will have flown on a SAF-blend powered flight by 2025. But if governments, through effective policy, help the sustainable fuel industry to scale-up its production, it is possible that one billion passengers could experience an SAF flight by 2025. The steps needed to deliver this include:

  • Allowing SAF to compete with automotive biofuels through equivalent or magnified incentives
  • Loan guarantees and capital grants for production facilities
  • Supporting SAF demonstration plants and supply chain research and development
  • Harmonized transport and energy policies, coordinated with the involvement of agriculture and military departments.

Acknowledging that some sources of biofuels for land transport have been criticized for their environmental credentials, de Juniac emphasized strongly the determination of the industry to only use truly sustainable sources for its alternative fuels.

“The airline industry is clear, united and adamant that we will never use a sustainable fuel that upsets the ecological balance of the planet or depletes its natural resources,” he said.

Source: IATA (www.iata.org)

EE-Strom im (Luft-)Verkehr

Power-to-Liquid

MITTEL- UND LANGFRISTIGE POTENZIALE VON PTL- UND H2-IMPORTEN AUS INTERNATIONALEN EE-VORZUGSREGIONEN

Die Bundesregierung hat sich völkerrechtlich verbindliche Klimaziele gesetzt, die bis 2050 ein weitgehend treibhausgasneutrales Deutschland vorsehen. Doch welche Antworten kann es hierbei für ein stetig steigendes Verkehrsaufkommen geben, das insbesondere im Flug- und Seeverkehr nicht mit heute absehbaren Lösungen durch die Elektromobilität gedeckt werden kann? Ist die Herstellung von strombasierten Kraftstoffen im Ausland ein Lösungsweg?

Eine aktuelle Untersuchung des Fraunhofer IWES in Kassel hat Gestehungskosten von synthetischen Flüssigkraftstoffen in Form von PtL (Power-to-Liquid) und LH2 (flüssiger Wasserstoff) an globalen Standorten bewertet. Dazu wurden umfassende Analysen verschiedener Standorte auf Basis räumlich-zeitlich hochaufgelöster EE-Erzeugungszeitreihen für Wind- und Sonnenenergie unternommen und eine kostenoptimale Systemauslegung für die einzelnen Standorte bestimmt. Zusätzlich wurde eine Flächenpotenzialermittlung für eine Bespielregion durchgeführt, um einen ersten Eindruck zum Flächenbedarf für die Flüssigkraftstoffproduktion aus EE zu erlangen.

EE-Vorzugsregionen

Im Vergleich zu einer nationalen oder europäischen Erzeugung hat sich ein deutlicher wirtschaftlicher Vorteil für die Nutzung internationaler EE-Vorzugsregionen gezeigt, trotz der zusätzlichen Aufwände für die Abscheidung von CO2 aus der Luft im PtL-Pfad.

Power-to-Liquid

Globale Kraftstoffgestehungskosten aus internationalen EE-Vorzugsregionen werden dabei um den Faktor 1,6 – 1,4 günstiger als europäische sein. Eine Kombination aus Windenergie- und PV-Anlagen führt zur kostenoptimalen Systemauslegung mit zum Teil über 6.000 Volllaststunden der Kraftstoffproduktionsanlagen. Die oftmals als Hemmnis diskutierte CO2-Abscheidung aus der Luft erscheint technisch und wirtschaftlich möglich (auch wenn Großanlagen noch ausstehen), da der vor allem thermisch anfallende Energieaufwand kostengünstig über Stromspitzen oder Wärmepumpen gedeckt werden kann. Standorte, die nicht über hohe Windressourcen verfügen erscheinen benachteiligt. Die Bandbreite für die Kraftstoffgestehungskosten im langfristigen Szenario liegt etwa zwischen 100 €/MWhPtL und 160 €/MWhPtL.

Kombination aus Wind und PV zielführend

Auch im Fall von flüssigem Wasserstoff (LH2) erscheint eine Kombination aus Wind und PV zielführend. Allerdings wurde nicht an allen Standorten ein ausgeglichenes Ausbauverhältnis von Windenergie- und PV-Anlagen identifiziert. Es erscheinen somit für Wasserstoff nicht ausschließlich Standorte mit sowohl hohen Wind- als auch Solarressourcen geeignet zu sein und infolgedessen ergibt sich global ein viel größeres Flächenpotenzial.

Erstaunlich ist, dass die Kostenunterschiede zwischen dem aufwändigeren PtL im Vergleich zu LH2 mit maximal 9% relativ gering sind. Denn die Aufwendungen für CO2-Abscheidung und Fischer-Tropsch-Synthese müssen den Aufwendungen für die Wasserstoffverflüssigung gegenüber gestellt werden. Je weiter die Produktion der Kraftstoffe von Deutschland entfernt ist, desto geringer fallen die Unterschiede ins Gewicht. Die Entscheidung zwischen einem PtL-basierten und einem Wasserstoff-basierten Technologiepfad müsste sich damit nicht über das Angebotspotenzial im Ausland, sondern notwendigerweise über Vorteile bei den Anwendungstechnologien in Deutschland unter Lösung der damit verbundenen infrastrukturellen Anforderungen entscheiden.

Durch die Untersuchung einer Beispielregion in Marokko wurde deutlich, dass ein hoher Flächenbedarf zur Flüssigkraftstoffproduktion benötigt wird. Zu hinterfragen ist auch, wie schnell ein solcher globaler Markt realistisch wachsen könnte. Dem muss die mögliche Nachfrage gegenübergestellt werden. So ist trotz Effizienzmaßnahmen im Flugsektor mit einem Anstieg des globalen Flugverkehr-Kraftstoffverbrauchs von heute ca. 2.400 TWh auf ca. 3.700 TWh in 2030 und auf 6.700 TWhPtL bis 2050 zu rechnen. Dies stellt mit einen jährlichen Anstieg von 100 bis 130 TWh/a und langfristig fast einer Verdreifachung der Kraftstoffnachfrage eine gewaltige Herausforderung für den globalen Klimaschutz dar. Es ist anzunehmen, dass die Nachfrage durch den starken Anstieg des globalen Luft- und Seeverkehrs einen möglichen Markthochlauf von PtL in internationalen EE-Vorzugsregionen bei weitem übersteigen würde.

Die detaillierten Ergebnisse finden Sie in der entsprechende Studie, die auf unserer PtL-download-area bereit steht (mit freundlicher Genehmigung von Fraunhofer IEE).

Quelle: Fraunhofer IEE https://www.iee.fraunhofer.de


 

Power-to-Liquid Pilotanlage

Power to Liquid

Baugesuch für Power-to-Liquid Pilotanlage läuft

• Gemeinsames Projekt mit Audi und Ineratec
• Investition von 3,5 Millionen Euro am Wasserkraftwerk
• Synthetischer Diesel aus Ökostrom

Laufenburg, 1. Februar 2018. „Wir stellen erneuerbare Energie zum Tanken bereit. Das ist ein wichtiger Schritt für die Energiewende“, sagt Dr. Sabine von Manteuffel, Mitglied der Geschäftsleitung der Energiedienst Holding AG. Energiedienst plant gemeinsam mit der Audi AG und der Ineratec GmbH eine Pilotanlage zur Erzeugung von klimaneutralen Kraftstoffen am Wasserkraftwerk Laufenburg in der Schweiz.

Energiedienst hat dafür nun das Baugesuch beim Kanton Aargau eingereicht. Mit dem Bau wird im Frühjahr begonnen. Es ist vorgesehen, bereits in diesem Jahr die ersten Liter synthetischen Diesels in Laufenburg zu produzieren. Gemeinsam werden die drei Unternehmen rund 3,5 Millionen Euro in den Aufbau der innovativen Pilotanlage investieren.

Power-to-Liquid

Die Power-to-Liquid-Anlage soll auf dem Kraftwerksgelände Strom aus Wasserkraft zu synthetischem Treibstoff und Wachsen transformieren. Sie besteht aus drei Containern und einem Trafohaus. Die Anlage hat eine Kapazität von rund 400.000 Litern pro Jahr. Das Karlsruher Unternehmen INERATEC GmbH, eine Ausgründung des Karlsruher Instituts für Technologie (KIT), stellt die mobile und dezentral einsetzbare Pilotanlage her.

Noch sind strombasierte Kraftstoffe eine Zukunftstechnologie. Schon bald aber könnten sie sich als echte ergänzende Alternative zur Elektromobilität etablieren. Die Vorteile liegen auf der Hand: Überschüssiger Strom aus erneuerbarer Erzeugung kann gespeichert werden und bei Bedarf umweltfreundlich Fahrzeuge mit herkömmlichen Verbrennungsmotoren antreiben. Zudem verringern sie die Abhängigkeit von Ländern mit Erdöl- und Gasvorkommen. Die Experten sind sich einig: Die Power-to-Liquid-Technologie entwickelt sich zu einer tragenden Säule der Energie- und Mobilitätswende. Energiedienst ist an diesem zukunftsträchtigen Thema von Beginn an dabei.

Der vor Ort im Wasserkraftwerk produzierte Ökostrom erzeugt durch Elektrolyse Wasserstoff, der mit CO2 aus biogenen Anlagen zusammengebracht und im Fischer-Tropsch-Verfahren zu Kohlenwasserstoffen synthetisiert wird. Die Kohlenwasserstoffe können zu synthetischem Diesel (e-fuels) für CO2-freies Autofahren und Wachsen, zum Beispiel für die Kosmetik- und Nahrungsmittelindustrie umgewandelt werden. Diese Produkte enthalten anders als aus Erdöl gewonnener Diesel keine Schadstoffe. Der synthetische Diesel verbrennt zum Beispiel nahezu schwefelfrei. Zudem entsteht durch den Prozess Wärme, die für Industrieanlagen und Wärmeversorgung in Quartieren genutzt werden könnte.

„Das Pilotprojekt ist ein gutes Beispiel für die Sektorkopplung in der Energiewende. Denn wenn es um die Reduktion des Kohlendioxidausstoßes und die effiziente Speicherung von erneuerbaren Energien geht, müssen die Sektoren Strom, Wärme und Mobilität zusammenspielen. Das funktioniert hier ausgezeichnet“, ergänzt Dr. Sabine von Manteuffel.

Auch am eigenen Wasserkraftwerk in Wyhlen arbeitet Energiedienst zusammen mit dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) am Thema Wasserstoff. Hier entsteht eine sogenannte Power-to-Gas-Anlage, die ebenfalls mit Elektrolyse Wasserstoff erzeugt. Dieser wird allerdings nicht weiterverarbeitet, sondern dient direkt als Kraftstoff für Brennstoffzellenfahrzeuge, zum Beispiel Autos oder Züge.

www.energiedienst.de/power-to-liquid

Unternehmensinformation

Die Energiedienst-Gruppe ist eine regional und ökologisch ausgerichtete deutsch-schweizerische Aktiengesellschaft. Das Energieunternehmen erzeugt Ökostrom aus Wasserkraft und vertreibt Strom sowie Gas. Eigene Netzgesellschaften versorgen die Kunden mit Strom. Zudem wächst Energiedienst in neuen Geschäftsfeldern, die die dezentrale erneuerbare und digitale Energiewelt der Zukunft ermöglichen. Für die Energiewende ihrer Kunden bietet die Unternehmensgruppe intelligent vernetzte Produkte und Dienstleistungen, darunter Photovoltaik-Anlagen, Wärmepumpen, Stromspeichersysteme und Elektromobilität nebst E-CarSharing. Die Energiedienst-Gruppe beliefert über 270.000 Kunden mit Strom. Sie beschäftigt rund 940 Mitarbeitende, davon etwa 50 Auszubildende. Zur Gruppe gehören die Energiedienst Holding AG, die Energiedienst AG, die ED Netze GmbH, die EnAlpin AG im Wallis sowie die Tritec AG und die winsun AG. Die Energiedienst Holding AG ist eine Beteiligungsgesellschaft der EnBW Energie Baden-Württemberg AG in Karlsruhe.

Power to Liquid

Quelle: Energiedienst Holding AG


 

Wichtiger Schritt zu nachhaltigen Power-to-Liquid-Treibstoffen

Power to Liquid

Power-to-Gas mit hohem Wirkungsgrad

05.02.2018
Das EU-Projekt HELMETH konnte den Wirkungsgrad der Methangasproduktion aus regenerativem Strom dank thermischer Verkettung chemischer Prozesse auf über 75 Prozent steigern.
Power to Liquid

Die Demonstratoranlage des Projekts HELMETH verbindet Methanisierung (links) und Elektrolyse (rechts) mit einem Wirkungsgrad von 76 Prozent. (Bild: sunfire GmbH)

Das Erdgasnetz kann als Puffer für den wetterabhängigen Strom aus Wind und Sonne dienen. Notwendig dazu sind wirtschaftliche Prozesse die Strom nutzen, um chemische Energieträger zu erzeugen. Einen wichtigen Schritt hat das vom Karlsruher Institut für Technologie (KIT) koordinierte EU-Projekt HELMETH nun gemacht. Es hat gezeigt, dass Hochtemperaturelektrolyse und Methanisierung als gemeinsamer Power-to-Gas-Prozess mit einem Wirkungsgrad von über 75 Prozent im Technikumsmaßstab möglich sind.

„Wir haben die Synergien zwischen Elektrolyse und Methanisierung erstmals konsequent ausgenutzt und so einen Wirkungsgrad erreicht, der rund 20 Prozentpunkte über dem der Standardtechnologien liegt“, erklärt Dimosthenis Trimis vom KIT, Koordinator des EU-Projektes HELMETH. „Dank der breiten disziplinären Basis unseres Forschungsverbundes konnten wir zur gesellschaftlichen Herausforderung Energiewende einen markanten Mosaikstein beitragen.“

Eine konventionelle Power-to-Gas Industrieanlage setzt rund 54 Prozent der elektrischen Energie erneuerbaren Stroms in chemische Energie des Brennstoffes Methan um. Der Prototyp des EU-Projektes HELMETH, der in etwa in zwei gängige Seefracht-Container von je rund sechs Metern Länge passt, erreichte bei den finalen Messungen einen Wirkungsgrad von 76 Prozent, was auf einen Wirkungsgrad im Industriemaßstab von 80 Prozent hoffen lässt. Parallel wurden Studien zur Wirtschaftlichkeit und Klimabilanz der neuen Technologie erstellt. „Mit so hohen Wirkungsgraden macht die Power-to-Gas-Technologie einen großen Schritt hin zur Wirtschaftlichkeit“, so Trimis. Sogar Wirkungsgrade von mehr als 80 Prozent scheinen möglich, wenn die in HELMETH identifizierten, limitierenden Prozesschritte durch künftige Forschung in Angriff genommen werden.

Ein großes Potenzial, das in HELMETH gehoben wurde, lag in der optimalen Nutzung der Prozesswärme aus der Methanisierung, um etwa den Wärmebedarf bei der verwendeten Elektrolysetechnologie zu decken. Insbesondere die Hochtemperaturelektrolyse bei rund 800 Grad Celsius und hohen Drücken hat thermodynamische Vorteile, die den Wirkungsgrad steigern. Bei der Elektrolyse wird der Strom zunächst genutzt, um Wasser in Sauerstoff und den Energieträger Wasserstoff zu zersetzen. Danach reagiert der Wasserstoff gemeinsam mit Kohlendioxid oder Kohlenmonoxid unter Wärmeentwicklung zu Methan, dem Hauptbestandteil von Erdgas, weiter. Der Vorteil von Methan gegenüber Wasserstoff ist, dass es in der bestehenden Erdgasinfrastruktur ohne Begrenzungen oder weitere Aufbereitung eingespeist werden kann. Die Einspeisung von reinem Wasserstoff bedarf möglicherweise bei Transport und Anwendungen größeren Anpassungen, da Energiedichte und chemische Eigenschaften stark unterschiedlich sind. Das im HELMETH-Projekt erzeugte Erdgassubstitut enthielt letztlich stets Wasserstoffkonzentrationen kleiner 2 Volumenprozent und wäre somit in das gesamte deutsche Erdgasnetz ohne Einschränkungen einspeisefähig.

Das Projekt HELMETH lief fast vier Jahre und mit einem Budget von rund 3,8 Millionen Euro. Das Projekt wurde mit 2,5 Millionen Euro aus dem European Union’s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative gefördert. HELMETH steht als Akronym für “Integrated High-Temperature ELectrolysis and METHanation for Effective Power to Gas Conversion“. Projektpartner sind neben dem KIT die Universität Turin und TU Athen, die Firmen Sunfire GmbH und EthosEnergy Italia SPA sowie das European Research Institute of Catalysis ERIC und der DVGW –Deutscher Verein des Gas und Wasserfaches e.V.

Quelle: KIT


 

Vahana, das selbststeuernde eVTOL-Flugzeug von A³ by Airbus, absolviert erfolgreich ersten vollständigen Testflug

nachhaltige Luftfahrt

Meilenstein bei der Entwicklung des urbanen Lufttransports zwei Jahre nach Programmstart von Vahana erreicht

Vahana, das rein elektrische, selbststeuernde eVTOL-Flugzeug von A³ by Airbus, schloss heute den ersten vollständigen Testflug, bei dem es eine Höhe von 5 Metern (16 Fuß) erreichte, erfolgreich ab. Anschließend landete es wieder sicher. Der Test wurde am 31. Januar 2018 um 8.52 Uhr (Pazifische Zeit) auf dem Testgelände Pendleton UAS Range in Pendleton, Oregon, durchgeführt. Der erste Flug mit einer Dauer von 53 Sekunden war vollständig selbstpilotiert. Am folgenden Tag schloss Vahana einen zweiten Flug ab.

„Heute feiern wir einen bedeutenden Durchbruch in der Luftfahrtinnovation“, sagte Zach Lovering, Project Executive von Vahana. „Das Vahana-Team nahm eine Entwurfsskizze auf einer Serviette und baute in nur zwei Jahren ein vollständig selbststeuerndes Flugzeug, das jetzt seinen ersten Flug erfolgreich abgeschlossen hat. Unser Team bedankt sich für die Unterstützung, die wir von A³ und der Airbus-Familie sowie von unseren Partnern, einschließlich MTSI und der Pendleton UAS Range, erhalten haben.“

Vahana ist ein Projekt, das bei , dem Vorposten von Airbus im Silicon Valley, entwickelt wurde. A³ ermöglicht den Zugang zu einzigartigen Talenten und Ideen, neuen Partnerschaftsmöglichkeiten und einer zügigen Ausführung. Ziel von Vahana ist es, den individuellen Flug zu demokratisieren und dem wachsenden Bedürfnis nach urbaner Mobilität durch den Einsatz neuester Technologien in den Bereichen Elektroantrieb, Energiespeicherung und Bildverarbeitung (Machine Vision) gerecht zu werden.

„Der erste Flug von Vahana zeigt die einzigartige Fähigkeit von Airbus, ambitionierte Ideen zügig umzusetzen – ohne Kompromisse bei der Qualität und Sicherheit, für die das Unternehmen bekannt ist. Für A³ ist dies ein Beweis, dass wir sinnvolle Innovationen mit energischen Projektzeitplänen hervorbringen können, um einen echten Wettbewerbsvorteil für Airbus zu schaffen“, sagte Rodin Lyasoff, A³ CEO und ehemaliger Project Executive von Vahana. „Wir müssen uns nun darauf konzentrieren, die Leistung des hart arbeitenden Vahana-Teams zu feiern und gleichzeitig die daraus entstandene Dynamik zu nutzen.“

Vahana verhilft damit seinen Selbstpilotierungsfähigkeiten ohne Passagier zum Durchbruch. Nach diesen erfolgreichen Schwebeflügen wird das Team weitere Tests, einschließlich der Übergänge und des Vorwärtsflugs, durchführen.

Weitere Informationen finden Sie unter: vahana.aero

https://www.businesswire.com/news/home/20180201006610/en/Vahana-Self-Piloted-eVTOL-aircraft-A%C2%B3-Airbus-Successfully

Bilder finden Sie unter: https://www.airbus-sv.com/media

Über A³ by Airbus
A³ („A-cubed“) wurde im Mai 2015 als Vorposten für Zukunftsprojekte von Airbus im Silicon Valley gegründet. A³ konzentriert sich auf Projekte mit drei Merkmalen: Geschwindigkeit, Transparenz und Verpflichtung, produktfähige oder überzeugende Demonstratoren hervorzubringen. Um mehr zu erfahren, besuchen Sie uns unter www.airbus-sv.com oder auf Twitter und LinkedIn.

Über das Projekt Vahana
Vahana ist ein Fahrzeugprojekt, dessen Schwerpunkt auf der Entwicklung selbststeuernder, senkrecht startender und landender (VTOL) elektrischer Flüge liegt. Es wird bei A³, dem Vorposten für Zukunftsprojekte von Airbus im Silicon Valley, entwickelt. Weitere Informationen finden Sie unter vahana.aero und folgen Sie uns auf Twitter.us

nachhaltige Luftfahrt

Quelle: Airbus


 

Shell: Weltgrösste Wasserstoff-Elektrolyse entsteht in der Rheinland Raffinerie bis 2020

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

Fortschrittliche Wasserstoff-Gewinnung als Beitrag zur Energiewende

Wesseling/Köln, 18. Januar 2018: Shell und ITM Power werden in der Raffinerie Rheinland, Werk Wesseling, die weltweit größte PEM-Wasserstoff-Elektrolyse-Anlage errichten. Mit einer Kapazität von zehn Megawatt wird der Wasserstoff vor allemfür die Verarbeitung von Produkten der Raffinerie genutzt. Die Technologie wird zugleich für einen möglichen Einsatz in anderen Sektoren getestet.
Das europäische Konsortium von Shell, ITM Power, SINTEF, thinkstep und Element Energy hat eine entsprechende Vereinbarung unterzeichnet. Die Gesamtinvestition des Projekts, einschließlich der Integration in die Raffinerie, beläuft sich auf rund 20 Millionen Euro. Davon stellt die Europäische “Fuel Cell Hydrogen Joint Undertaking” zehn Millionen Euro zur Verfügung.
Nach dem offiziellen Startschuss beginnen die Experten nun mit dem detaillierten technischen Planungs- und Genehmigungsverfahren. Die Anlage mit dem Namen „Refhyne“ soll 2020 in Betrieb gehen. Es wird die erste großindustrielle Anwendung der so genannten Polymer-Elektrolyt-Membran-Technologie sein.
„Die neue Anlage ermöglicht es, Wasserstoff aus Strom statt aus Erdgas zu gewinnen. Darüber hinaus kann die geplante Anlage zur Stabilität des Stromnetzes beitragen und die Nutzung von Strom aus erneuerbaren Energiequellen erleichtern”, erklärt Lori Ryerkerk, Executive Vice President Shell Manufacturing. „Wenn er als ‘grüner Wasserstoff’ mit erneuerbarer Elektrizität gewonnen wird, wird er dazu beitragen, die CO2-Intensität des Standorts zu reduzieren. Das ist für uns ein wichtiges Ziel“.
Die Rheinland Raffinerie benötigt jährlich rund 180.000 Tonnen Wasserstoff, der derzeit vor allem durch Dampfreformierung aus Erdgas gewonnen wird. Die neue Anlage kann jährlich zusätzliche 1.300 Tonnen Wasserstoff produzieren, die vollständig in die Raffinerie-Prozesse integriert werden, beispielsweise für die Entschwefelung konventioneller Kraftstoffe.
Dr. Thomas Zengerly, Direktor der Shell Rheinland Raffinerie, betont: „Wir freuen uns, mit der Europäischen Union zusammenzuarbeiten und durch die Erprobung dieser Technologie am Standort Wesseling das künftige Energiesystem Europas mit zu entwickeln. Bei Erfolg besteht die Möglichkeit, dass diese Technologie in unserer Raffinerie erweitert und in anderen Produktionsstätten eingesetzt wird. Wir könnten dann auch Wasserstoff an Kunden außerhalb der Raffinerie liefern.“
Wasserstoff kann bei der Energiewende eine wichtige Rolle spielen. Heute wird Wasserstoff bereits bei Brennstoffzellen-Fahrzeugen sowie in industriellen Anwendungen eingesetzt. Beim Transport kann Wasserstoff helfen, die Luftqualität vor Ort zu verbessern, da Brennstoffzellen-Fahrzeuge nur Wasserdampf ausstoßen. Wenn der Wasserstoff aus erneuerbaren Quellen gewonnen wird, trägt er dazu bei, die CO2-Emissionen des Straßenverkehrs zu verringern. Shell beteiligt sich an mehreren Initiativen zum Aufbau eines Wasserstoff-Tankstellennetzes in einer Reihe von Märkten, so auch in Deutschland.
Das Projekt wird mit Mitteln der Fuell Cells and Hydrogen 2 Joint Undertaking im Rahmen der Finanzhilfevereinbarung Nr. 779579 unterstützt. Dieses Unternehmen erhält Unterstützung aus dem Forschungs- und Innovationsprogramm der Europäischen Union “Horizont 2020” und der Wasserstoff-Industrie und der Wasserstoff-Europa-Forschung.

Quelle: Shell


 

NASA und DLR: Gemeinsame Flugversuche zur Klimawirkung des Luftverkehrs

nachhaltige Luftfahrt

Deutliche Verringerung der Rußemissionen bei alternativen Kraftstoffen erwartet

Köln, 12. Januar 2018: Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) und die US-amerikanischen Luft- und Raumfahrtbehörde NASA werden im Januar 2018 erstmals gemeinsame Forschungsflüge in Deutschland durchführen. Im Fokus stehen die Emissionen von alternativen Kraftstoffen und die Charakterisierung der Eiskristalle in Kondensstreifen, wobei exemplarisch Biokraftstoff zum Einsatz kommt. Erste gemeinsame DLR/NASA-Flüge im Jahr 2014 in Palmdale/Kalifornien zeigten, dass eine Beimischung von 50 Prozent alternativem Kraftstoff im Reiseflug die Rußpartikel-Emissionen eines Flugzeugtriebwerks um 50 bis 70 Prozent gegenüber der Verbrennung von reinem Kerosin reduziert. Mit den nun geplanten Forschungsflügen sollen  die Partikel-Emissionen und ihr Einfluss auf die Wolkenbildung aus Kondensstreifen und damit ihre Klimawirkung bestimmt werden. Ab dem 14. Januar 2018 wird dafür das NASA-Forschungsflugzeug DC-8 für drei Wochen nach Deutschland kommen und gemeinsam mit dem DLR-Forschungsflugzeug A320 ATRA fliegen. “Wir freuen uns über das Vertrauen der NASA, solch eine umfangreiche Mission mit uns gemeinsam in Deutschland durchzuführen”, sagt DLR-Luftfahrtvorstand Prof. Rolf Henke. Die Forschungsflüge werden von der Ramstein Air Base aus starten.

“Die NASA könnte diese Forschungsflugmission nicht alleine stemmen”, sagt Bruce Anderson, wissenschaftlicher Leiter der Mission bei der NASA. „Wir bringen hier beide Forschungseinrichtungen mit ihren Ressourcen und Forschungsinfrastrukturen in einer Weise zur Untersuchung von alternativen Kraftstoffen zusammen, wie es niemals zuvor möglich war.“ Die gemeinsame Forschungsflugkampagne trägt den Namen ND-MAX/ECLIF 2 (NASA/DLR-Multidisciplinary Airborne eXperiments/Emission and CLimate Impact of alternative Fuel).

Im Rahmen der internationalen Forschungsmission wird das DLR-Forschungsflugzeug A320 ATRA (Advanced Technology Research Aircraft) mit verschiedenen Kraftstoffmischungen fliegen, während das vollinstrumentierte “Fliegende Labor” der NASA (DC-8) in sicherem Abstand folgt, um im Abgasstrahl Rußpartikel, Gasemissionen und Eiskristalle im Kondensstreifen  zu messen. Dabei sind zahlreiche Messgeräte des DLR an Bord des NASA-Flugzeugs installiert. “Wir haben Instrumente zur simultanen Vermessung der Größenverteilung der Ruß-und Eispartikel sowie der gasförmigen Emissionen im Nachlauf des ATRA  an Bord der DC-8 installiert”, berichtet Dr. Hans Schlager vom DLR-Institut für Physik der Atmosphäre. “Der Fokus unserer Messungen liegt darauf, die Emissionen beim Einsatz verschiedener Kraftstoffmischungen zu charakterisieren. Besonders interessiert uns wie sich die Rußemissionen der unterschiedlichen Treibstoffe auf die Strahlungseigenschaften und Lebensdauer der Kondensstreifen auswirken.”

Vorbereitungen in Kalifornien

Mehrere DLR-Wissenschaftler und Ingenieure haben zuvor am Heimatstandort der DC-8 beim Armstrong Flight Research Center der NASA in Kalifornien am Einbau der Messgeräte gearbeitet. Gleichzeitig liefen die Vorbereitungen auf dem Gelände der NATO Air Base in Ramstein, Rheinland-Pfalz, von wo aus die Forschungsflüge in der zweiten Januarhälfte jeweils ihren Ausgangspunkt nehmen. “Wir sind gerade dabei den speziell für die Flugversuche produzierten Kraftstoff anzuliefern”, sagt André Krajewski von den DLR-Flugexperimenten. “Für insgesamt acht geplante gemeinsame Forschungsflüge haben wir Kraftstoff-Mischungen mit einem Anteil von 30 Prozent bis 50 Prozent beigemischtem HEFA.” Der exemplarisch gewählte Biotreibstoff HEFA (Hydroprocessed Esters and Fatty Acids) wird zu großen Teilen aus dem Öl von Leindotter-Pflanzen gewonnen, er steht hier exemplarisch für alternative Kraftstoffe, die auch synthetisch sein könnten.

Neben den Emissionen interessiert das internationale Forscherteam ebenfalls, wie sich die verschiedenen Kraftstoffmischungen auf die Leistungsfähigkeit der Triebwerke auswirken. “Biotreibstoffe wie HEFA unterscheiden sich in ihrer Zusammensetzung zu herkömmlichem Kerosin dadurch, dass sie reine Paraffine sind und keine zyklischen Kohlenwasserstoffe beinhalten. In Mischung mit herkömmlichem Jet A-1 Kerosin erhält man einen zugelassenen Kraftstoff”, erklärt Dr. Patrick Le Clercq vom DLR-Institut für Verbrennungstechnik. “Diese veränderte Zusammensetzung hat Auswirkungen auf die Bildung von Ruß bei der Verbrennung.”

Bisherige gemeinsame Forschungsflüge

In den vergangenen Jahren fanden bereits mehrere Forschungskampagnen in den USA und in Deutschland zu alternativen Kraftstoffen statt, bei denen verschiedene Forschungsflugzeuge bei unterschiedlichen meteorologischen Bedingungen eingesetzt wurden. Frühere Forschungskampagnen unter der Leitung der NASA fanden 2013 und 2014 in Kalifornien unter dem Namen ACCESS I und II statt (Alternative Fuel Effects on Contrails and Cruise Emissions). Während dieser Kampagnen flog die DC-8 der NASA mit alternativen Kraftstoffen, während kleinere Forschungsjets wie die Falcon HU-25 der NASA und die Falcon 20 des DLR im Abgasstrahl Messungen durchführten. 2015 folgte die ECLIF-Kampagne unter Leitung des DLR in Deutschland, bei der ebenfalls Forscher der NASA beteiligt waren. Bei dieser Kampagne flog der A320 ATRA des DLR mit alternativen Treibstoffen und die instrumentierte DLR-Falcon 20 führte im Nachlauf  Messungen der Emissionen und Kondensstreifen durch. Zudem fanden umfangreiche Emissionsmessungen bei Standläufen am Boden statt.

Bisherige Ergebnisse der Forschungsflüge zeigten eine deutliche Verringerung der Rußemissionen bei alternativen Kraftstoffen und legen nah, dass damit die Anzahl an Eiskristallen in Kondensstreifen reduziert wird. “Die geringere Rußemission bei diesen Kraftstoffen ist eine gute Nachricht für die Umwelt, und sie wäre noch besser, wenn die Flugtests bestätigen, dass sich damit auch die Anzahl der Eiskristalle in Kondensstreifen reduzieren lässt”, sagt NASA-Forscher Anderson. DLR-Forscher Dr. Hans Schlager ergänzt: “Diese Frage ist von großer Bedeutung, weil Kondensstreifen und die sich daraus bildenden Zirruswolken vermutlich eine größere wärmende Wirkung auf die Erdatmosphäre haben, als alle über mehr als 100 Jahre in der Atmosphäre gesammelten Kohlendioxid-Emissionen des Luftverkehrs zusammen.” Kondensstreifen bestehen aus  vielen kleinen Eispartikeln, die sich durch Kondensation von Wasserdampf an den Rußpartikeln der Flugzeugabgase bilden. Die  Kondensstreifen können  in Höhen von etwa 8 bis 12 Kilometern bei feucht-kalten Bedingungen mehrere Stunden bestehen und hohe Wolken sogenannte Kondensstreifen-Zirren bilden. Diese Wolken können je nach Sonnenstand und Untergrund  lokal eine wärmende oder kühlende Wirkung entfalten. Die Kenntnis darüber ist für die Beurteilung der Klimawirkung der Luftfahrt essentiell. Bisherige Forschungsarbeiten legen nahe, dass global die wärmende Wirkung überwiegt.

nachhaltige Luftfahrt

Günstige meteorologische Bedingungen in Deutschland

Für die anstehenden DLR/NASA-Flüge, mit den geplanten Messungen der Eiskristalle in Kondensstreifen, sind die meteorologischen Bedingungen im Winter  in Deutschland für die Bildung von Kondensstreifen günstig. Durch den Einsatz des DLR A320 ATRA als „Emissionsquelle“ und der NASA DC-8 als Messplattform, können die Forscher ihre Flugtests in Höhen und mit üblichen Reisefluggeschwindigkeiten von Passagierjets durchführen, wo sich Kondensstreifen typischerweise bilden. Dabei konnten  die Forscher in der DC-8 die bisher  umfangreichste  Messinstrumentierung für solche Untersuchungen installieren wobei die Hälfte der Messgeräte vom DLR-Institut für Physik der Atmosphäre stammt.

Die gemeinsamen Flugtests von NASA und DLR sind bis zum 2. Februar geplant und sollen insgesamt 80 Flugstunden umfassen.

 

Quelle: DLR

1 2 3 6